Lets take , I have data of tickets sold in each category for a number of years by months. Like this:
Year Premium Silver Budget
Jan2016 112354 36745 456563
Feb2016 1233445 234322 4533345
Mar2016 13456544 346755 34564422
I have this data till Feb 2019 for each month. This is the code I use to apply arima for each category separately. I import the count of each column and do the below:
> count <-data.frame(mytickets$Premium)
> tickets<-ts(count, frequency = 12, start = c(2016, 1),end=c(2018,6))
> pi=auto.arima(tickets)
> summary(pi)
> q=forecast(pi,h=12)
I want to predict how many tickets will be sold next year evey month. Is it possible to apply auto ARIMA in the same shot? I have been applying the model separately so far.
You can always try lapply
when you want to calculate multiple things in a similar way:
dt <- read.table(text ="Year Premium Silver Budget
Jan2016 112354 36745 456563
Feb2016 1233445 234322 4533345
Mar2016 13456544 346755 34564422", header = TRUE)
library(data.table)
dt <- data.table(dt)
res <- lapply(c("Premium", "Silver", "Budget"), function(x) {
count <- dt[, get(x)]
tickets <-
ts(
count,
frequency = 12,
start = c(2016, 1),
end = c(2018, 6)
)
pi = auto.arima(tickets)
forecast(pi, h = 12)
})