I have a custom Transformer in my sklearn
Pipeline and I wonder how to pass a parameter to my Transformer :
In the code below, you can see that I use a dictionary "weight" in my Transformer. I wish to not define this dictionary inside my Transformer but instead to pass it from the Pipeline, so that I can include this dictionary in a grid search . Is it possible to pass the dictionary as a parameter to my Transformer ?
# My custom Transformer
class TextExtractor(BaseEstimator, TransformerMixin):
"""Concat the 'title', 'body' and 'code' from the results of
Stackoverflow query
Keys are 'title', 'body' and 'code'.
"""
def fit(self, x, y=None):
return self
def transform(self, x):
# here is the parameter I want to pass to my transformer
weight ={'title' : 10, 'body': 1, 'code' : 1}
x['text'] = weight['title']*x['Title'] +
weight['body']*x['Body'] +
weight['code']*x['Code']
return x['text']
param_grid = {
'min_df' : [10],
'max_df' : [0.01],
'max_features': [200],
'clf' : [sgd]
# here is the parameter I want to pass to my transformer
'weigth' : [{'title' : 10, 'body': 1, 'code' : 1}, {'title' : 1, 'body':
1, 'code' : 1}]
}
for g in ParameterGrid(param_grid) :
classifier_pipe = Pipeline(
steps=[ ('textextractor', TextExtractor()), #is it possible to pass
my parameter ?
('vectorizer', TfidfVectorizer(max_df=g['max_df'],
min_df=g['min_df'], max_features=g['max_features'])),
('clf', g['clf']),
],
)
For this, you just need to add an __init__()
method at the beginning of your class definition. In this step, you will define your class TextExtractor
as taking an argument that you call weight
.
Here is how it can be done: (I added lots of lines of code before for the sake of reproducibility - given you did not specify anything I made up some fake data. I also assumed that what you are trying to do with the weights is to multiply strings?)
# import all the necessary packages
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import ParameterGrid, GridSearchCV
from sklearn.linear_model import SGDClassifier
import pandas as pd
import numpy as np
#Sample data
X = pd.DataFrame({"Title" : ["T1","T2","T3","T4","T5"], "Body": ["B1","B2","B3","B4","B5"], "Code": ["C1","C2","C3","C4","C5"]})
y = np.array([0,0,1,1,1])
#Define the SGDClassifier
sgd = SGDClassifier()
Below, I only added the init step:
# My custom Transformer
class TextExtractor(BaseEstimator, TransformerMixin):
"""Concat the 'title', 'body' and 'code' from the results of
Stackoverflow query
Keys are 'title', 'body' and 'code'.
"""
def __init__(self, weight = {'title' : 10, 'body': 1, 'code' : 1}):
self.weight = weight
def fit(self, x, y=None):
return self
def transform(self, x):
x['text'] = self.weight['title']*x['Title'] + self.weight['body']*x['Body'] + self.weight['code']*x['Code']
return x['text']
Note that I passed a parameter value by default in the case you don't specify it. This is up to you. Then you can call your transformer by doing:
textextractor = TextExtractor(weight = {'title' : 5, 'body': 2, 'code' : 1})
textextractor.transform(X)
This should return:
0 T1T1T1T1T1B1B1C1
1 T2T2T2T2T2B2B2C2
2 T3T3T3T3T3B3B3C3
3 T4T4T4T4T4B4B4C4
4 T5T5T5T5T5B5B5C5
Then you can define your parameter grid:
param_grid = {
'vectorizer__min_df' : [0.1],
'vectorizer__max_df' : [0.9],
'vectorizer__max_features': [200],
# here is the parameter I want to pass to my transformer
'textextractor__weight' : [{'title' : 10, 'body': 1, 'code' : 1}, {'title' : 1, 'body':
1, 'code' : 1}]
}
And finally do:
for g in ParameterGrid(param_grid) :
classifier_pipe = Pipeline(
steps=[ ('textextractor', TextExtractor(weight = g['textextractor__weight'])),
('vectorizer', TfidfVectorizer(max_df=g['vectorizer__max_df'],
min_df=g['vectorizer__min_df'], max_features=g['vectorizer__max_features'])),
('clf', sgd), ] )
Instead of this, you might want to do a gridsearch, which then would require you to write:
pipe = Pipeline( steps=[ ('textextractor', TextExtractor()),
('vectorizer', TfidfVectorizer()),
('clf', sgd) ] )
grid = GridSearchCV(pipe, param_grid, cv = 3)
grid.fit(X,y)