I have following definition of list in Coq:
Variable A : Set.
Variable P : A -> Prop.
Hypothesis P_dec : forall x, {P x}+{~(P x)}.
Inductive plist : nat -> Set :=
pnil : plist O
| pcons : A -> forall n, plist n -> plist n
| pconsp : forall (a:A) n, plist n -> P a -> plist (S n)
.
It describes "list of elements of type A
where at least n
of them fulfill predicate P
".
My task is to create function that will convert casual list into plist
(with maximum possible n
). My attempt was to first count all elements that match P
and then set the output type according to the result:
Fixpoint pcount (l : list A) : nat :=
match l with
| nil => O
| h::t => if P_dec h then S(pcount t) else pcount t
end.
Fixpoint plistIn (l : list A) : (plist (pcount l)) :=
match l with
| nil => pnil
| h::t => match P_dec h with
| left proof => pconsp h _ (plistIn t) proof
| right _ => pcons h _ (plistIn t)
end
end.
However, I get an error in the line with left proof
:
Error:
In environment
A : Set
P : A -> Prop
P_dec : forall x : A, {P x} + {~ P x}
plistIn : forall l : list A, plist (pcount l)
l : list A
h : A
t : list A
proof : P h
The term "pconsp h (pcount t) (plistIn t) proof" has type
"plist (S (pcount t))" while it is expected to have type
"plist (pcount (h :: t))".
The problem is that Coq cannot see that S (pcount t)
equals pcount (h :: t)
knowing that P h
, which was already proven. I cannot let Coq know this truth.
How to define this function correctly? Is it even possible to do so?
You can use dependent pattern-matching, as the result type plist (pcount (h :: t))
depends on whether P_dec h
is left
or right
.
Below, the keyword as
introduces a new variable p
, and return
tells the type of the whole match
expression, parameterized by p
.
Fixpoint plistIn (l : list A) : (plist (pcount l)) :=
match l with
| nil => pnil
| h::t => match P_dec h as p return plist (if p then _ else _) with
| left proof => pconsp h (pcount t) (plistIn t) proof
| right _ => pcons h _ (plistIn t)
end
end.
The type plist (if p then _ else _)
must be equal to plist (pcount (h :: t))
when substituting p := P_dec h
. Then in each branch, say left proof
, you need to produce plist (if left proof then _ else _)
(which reduces to the left branch).
It's a bit magical that Coq can infer what goes in the underscores here, but to be safe you can always spell it out: if p then S (pcount t) else pcount t
(which is meant to exactly match the definition of pcount
).