I'm looking for a way to analyze two cubic splines and find the point where they come the closest to each other. I've seen a lot of solutions and posts but I've been unable to implement the methods suggested. I know that the closest point will be one of the end-points of the two curves or a point where the first derivative of both curves is equal. Checking the end points is easy. Finding the points where the first derivatives match is hard. Given:
Curve 0 is B(t) (red)
Curve 1 is C(s) (blue)
A candidate for closest point is where:
B'(t) = C'(s)
The first derivative of each curve takes the following form:
Where the a, b, c coefficients are formed from the control points of the curves:
a=P1-P0
b=P2-P1
c=P3-P2
Taking the 4 control points for each cubic spline I can get each curve's parametric sections into a matrix form that can be expressed with Numpy with the following Python code:
def test_closest_points():
# Control Points for the two qubic splines.
spline_0 = [(1,28), (58,93), (113,95), (239,32)]
spline_1 = [(58, 241), (26,76), (225,83), (211,205)]
first_derivative_matrix = np.array([[3, -6, 3], [-6, 6, 0], [3, 0, 0]])
spline_0_x_A = spline_0[1][0] - spline_0[0][0]
spline_0_x_B = spline_0[2][0] - spline_0[1][0]
spline_0_x_C = spline_0[3][0] - spline_0[2][0]
spline_0_y_A = spline_0[1][1] - spline_0[0][1]
spline_0_y_B = spline_0[2][1] - spline_0[1][1]
spline_0_y_C = spline_0[3][1] - spline_0[2][1]
spline_1_x_A = spline_1[1][0] - spline_1[0][0]
spline_1_x_B = spline_1[2][0] - spline_1[1][0]
spline_1_x_C = spline_1[3][0] - spline_1[2][0]
spline_1_y_A = spline_1[1][1] - spline_1[0][1]
spline_1_y_B = spline_1[2][1] - spline_1[1][1]
spline_1_y_C = spline_1[3][1] - spline_1[2][1]
spline_0_first_derivative_x_coefficients = np.array([[spline_0_x_A], [spline_0_x_B], [spline_0_x_C]])
spline_0_first_derivative_y_coefficients = np.array([[spline_0_y_A], [spline_0_y_B], [spline_0_y_C]])
spline_1_first_derivative_x_coefficients = np.array([[spline_1_x_A], [spline_1_x_B], [spline_1_x_C]])
spline_1_first_derivative_y_coefficients = np.array([[spline_1_y_A], [spline_1_y_B], [spline_1_y_C]])
# Show All te matrix values
print 'first_derivative_matrix:'
print first_derivative_matrix
print
print 'spline_0_first_derivative_x_coefficients:'
print spline_0_first_derivative_x_coefficients
print
print 'spline_0_first_derivative_y_coefficients:'
print spline_0_first_derivative_y_coefficients
print
print 'spline_1_first_derivative_x_coefficients:'
print spline_1_first_derivative_x_coefficients
print
print 'spline_1_first_derivative_y_coefficients:'
print spline_1_first_derivative_y_coefficients
print
# Now taking B(t) as spline_0 and C(s) as spline_1, I need to find the values of t and s where B'(t) = C'(s)
This post has some good high-level advice but I'm unsure how to implement a solution in python that can find the correct values for t and s that have matching first derivatives (slopes). The B'(t) - C'(s) = 0 problem seems like a matter of finding roots. Any advice on how to do it with python and Numpy would be greatly appreciated.
Using Numpy assumes that the problem should be solved numerically. Without loss of generality we can treat that 0<s<=1
and 0<t<=1
. You can use SciPy package to solve the problem numerically, e.g.
from scipy.optimize import minimize
import numpy as np
def B(t):
"""Assumed for simplicity: 0 < t <= 1
"""
return np.sin(6.28 * t), np.cos(6.28 * t)
def C(s):
"""0 < s <= 1
"""
return 10 + np.sin(3.14 * s), 10 + np.cos(3.14 * s)
def Q(x):
"""Distance function to be minimized
"""
b = B(x[0])
c = C(x[1])
return (b[0] - c[0]) ** 2 + (b[1] - c[1]) ** 2
res = minimize(Q, (0.5, 0.5))
print("B-Point: ", B(res.x[0]))
print("C-Point: ", C(res.x[1]))
B-Point: (0.7071067518175205, 0.7071068105555733)
C-Point: (9.292893243165555, 9.29289319446135)
This is example for two circles (one circle and arc). This will likely work with splines.