to get the gradients of the output with respect to the input, one can use
grads = tf.gradients(model.output, model.input)
where grads =
[<tf.Tensor 'gradients_81/dense/MatMul_grad/MatMul:0' shape=(?, 18) dtype=float32>]
This is a modell, where there are 18 continous inputs and 1 continous output.
I assume, this is a symbolic expression and that one needs a list of 18 entries to feed it to the tensor, such that it gives out the derivatives as floats.
I would use
Test =[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
with tf.Session() as sess:
alpha = sess.run(grads, feed_dict = {model.input : Test})
print(alpha)
But I get the error
FailedPreconditionError (see above for traceback): Error while reading resource variable dense_2/bias from Container: localhost. This could mean that the variable was uninitialized. Not found: Container localhost does not exist. (Could not find resource: localhost/dense_2/bias)
[[Node: dense_2/BiasAdd/ReadVariableOp = ReadVariableOp[dtype=DT_FLOAT, _device="/job:localhost/replica:0/task:0/device:CPU:0"](dense_2/bias)]]
What is wrong?
EDIT: This is, what has happened before:
def build_model():
model = keras.Sequential([
...])
optimizer = ...
model.compile(loss='mse'... )
return model
model = build_model()
history= model.fit(data_train,train_labels,...)
loss, mae, mse = model.evaluate(data_eval,...)
Progress so far:
Test =[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0]
with tf.Session() as sess:
tf.keras.backend.set_session(sess)
tf.initializers.variables(model.output)
alpha = sess.run(grads, feed_dict = {model.input : Test})
is also not working, giving the error:
TypeError: Using a `tf.Tensor` as a Python `bool` is not allowed. Use `if t is not None:` instead of `if t:` to test if a tensor is defined, and use TensorFlow ops such as tf.cond to execute subgraphs conditioned on the value of a tensor.
You're trying to use uninitialized variable. All you have to do is add
sess.run(tf.global_variables_initializer())
right after with tf.Session() as sess:
Edit: You need to register session with Keras
with tf.Session() as sess:
tf.keras.backend.set_session(sess)
And use tf.initializers.variables(var_list)
instead of tf.global_variables_initializer()
See https://blog.keras.io/keras-as-a-simplified-interface-to-tensorflow-tutorial.html
Edit:
Test = np.ones((1, 18), dtype=np.float32)
inputs = layers.Input(shape=[18,])
layer = layers.Dense(10, activation='sigmoid')(inputs)
model = tf.keras.Model(inputs=inputs, outputs=layer)
model.compile(optimizer='adam', loss='mse')
checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath='path/weights.hdf5')
model.fit(Test, nb_epoch=1, batch_size=1, callbacks=[checkpointer])
grads = tf.gradients(model.output, model.input)
with tf.Session() as sess:
tf.keras.backend.set_session(sess)
sess.run(tf.global_variables_initializer())
model.load_weights('path/weights.hdf5')
alpha = sess.run(grads, feed_dict={model.input: Test})
print(alpha)
This shows consistent result