I'm trying to calculate the weighted average of 3 columns where the weights are decided based on the count of missing values per row.
A reproducible example:
# Some simulated data
N <- 50
df <- data.table(int_1 = runif(N,1000,5000), int_2 = runif(N,1000,5000), int_3 = runif(N,1000,5000))
df[-1] <- lapply(df[-1], function(x) { x[sample(c(1:N), floor(N/10))] <- NA ; x })
# Function to calculate weighted average
# The weights are flexible and are input by user
a = 5
b = 3
c = 2
i = 10
wa_func <- function(x,y,z){
if(!(is.na(x) & is.na(y) & is.na(z))){
wt_avg <- (a/i)* x + (b/i) * y + (c/i) * z
} else if(!is.na(x) & !is.na(y) & is.na(z)){
wt_avg <- (a/(i-c))* x + (b/(i-c)) * y
} else if(!is.na(x) & is.na(y) & is.na(z)){
wt_avg <- a/(i-(b+c))* x
}
return(wt_avg)
}
df[, weighted_avg_int := mapply(wa_func,int_1,int_2,int_3)]
But the function outputs NA for any missing value in a row. What am I missing here?
Thanks in advance.
You need to change condition of the first if
in your function:
wa_func <- function(x, y, z) {
if (!(is.na(x) | is.na(y) | is.na(z))) {
wt_avg <- (a / i) * x + (b / i) * y + (c / i) * z
} else if (!is.na(x) & !is.na(y) & is.na(z)) {
wt_avg <- (a / (i - c)) * x + (b / (i - c)) * y
} else if (!is.na(x) & is.na(y) & is.na(z)) {
wt_avg <- a / (i - (b + c)) * x
}
return(wt_avg)
}
You can improve the function so you don need mapply
by wrapping your function with Vectorise()
:
wa_func <- Vectorize(function(x, y, z) {
a <- 5 # part of the function?
b <- 3
c <- 2
i <- 10
if (!(is.na(x) | is.na(y) | is.na(z))) {
(a / i) * x + (b / i) * y + (c / i) * z
} else if (!is.na(x) & !is.na(y) & is.na(z)) {
(a / (i - c)) * x + (b / (i - c)) * y
} else if (!is.na(x) & is.na(y) & is.na(z)) {
a / (i - (b + c)) * x
}
# no need for return()
})