Search code examples
rdistributioncdf

How to find the joint cumulative distribution function from a 2-D copula in R?


I am now working on copula in R and I wonder how to find the joint cumulative distribution in R?

D = c(1,3,2,2,8,2,1,3,1,1,3,3,1,1,2,1,2,1,1,3,4,1,1,3,1,1,2,1,3,7,1,4,6,1,2,1,1,3,1,2,2,3,4,1,1,1,1,2,2,12,1,1,2,1,1,1,3,4)
S = c(1.42,5.15,2.52,2.29,12.36,2.82,1.49,3.53,1.17,1.03,4.03,5.26,1.65,1.41,3.75,1.09,3.44,1.36,1.19,4.76,5.58,1.23,2.29,7.71,1.12,1.26,2.78,1.13,3.87,15.43,1.19,4.95,7.69,1.17,3.27,1.44,1.05,3.94,1.58,2.29,2.73,3.75,6.80,1.16,1.01,1.00,1.02,2.32,2.86,22.90,1.42,1.10,2.78,1.23,1.61,1.33,3.53,10.44)

After some exploration, I find that Gamma distribution is the best to describe the above data.

library(fitdistrplus)
fg_d <- fitdist(data = Dur, distr = "gamma", method = "mle")
fg_s <- fitdist(data = Sev, distr = "gamma", method = "mle")

Then, I try to select the copula family using the VineCopula packge:

mydata <- cbind(D=D, S=S)
u1 <- pobs(mydata[,1]) 
u2 <- pobs(mydata[,2])
fitCopula <- BiCopSelect(u1, u2, familyset=NA)
summary(fitCopula) 

The result indicats a "Survival Clayton". Then, I try to build the following copula:

library(copula)
cop_model <- surClaytonCopula(param = 5.79)

Now, according to the equation below (E(L) is assumed to be a constant): enter image description here

I need to find FD(d), FS(s), and C(FD(d),FS(s)) for given D and S values.

For example, if we take D=3 and S=2, then we have to find F(D<=3), F(S<=2), and C(D<=3 and S<=2). I wonder how to do this in R using the package copula?

Also, how can we find C(D<=3 or S<=2)? Thanks for any help.


Solution

  • Here's an answer using only base R and the copula package:


    • FD(d) is a gamma CDF. According to your code it has shape 2.20 and rate 0.98 and so FD(3) is pgamma(3, 2.20, 0.98) = 0.7495596

    • FS(s) is a gamma CDF. According to your code it has shape 1.56 and rate 0.45 and so FS(2) is pgamma(2, 1.56, 0.45) = 0.3631978

    • C(FD(d), FS(s)) is the survival Clayton Copula (also known as the rotated Clayton copula) evaluated with the aforementioned marginals. In R this is

    library(copula)
    D_shape <- 2.20
    D_rate  <- 0.98
    S_shape <- 1.56
    S_rate  <- 0.45
    surv_clay <- rotCopula(claytonCopula(5.79))
    pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    
    • The denominator of Equation (23) on page 810 of the Shiau 2006 paper in the OP comments shows that P(D>=3 or S>=2) = 1- C(FD(d), FS(s)) which is:
    1 - pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    
    • P(D<=3 or S<=2) = P(D<=3) + P(S<=2) - P(D<=3,S<=2) so
     pgamma(3, D_shape, D_rate) + 
     pgamma(2, S_shape, S_rate) - 
     pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    

    Sources


    Below is some code to double check some things via simulation.

    library(fitdistrplus)
    library(copula)
    library(VineCopula)
    
    D = c(1,3,2,2,8,2,1,3,1,1,3,3,1,1,2,1,2,1,1,3,4,1,1,3,1,1,2,1,3,7,1,4,6,1,2,1,1,3,1,2,2,3,4,1,1,1,1,2,2,12,1,1,2,1,1,1,3,4)
    S = c(1.42,5.15,2.52,2.29,12.36,2.82,1.49,3.53,1.17,1.03,4.03,5.26,1.65,1.41,3.75,1.09,3.44,1.36,1.19,4.76,5.58,1.23,2.29,7.71,1.12,1.26,2.78,1.13,3.87,15.43,1.19,4.95,7.69,1.17,3.27,1.44,1.05,3.94,1.58,2.29,2.73,3.75,6.80,1.16,1.01,1.00,1.02,2.32,2.86,22.90,1.42,1.10,2.78,1.23,1.61,1.33,3.53,10.44)
    
    (fg_d <- fitdist(data = D, distr = "gamma", method = "mle"))
    (fg_s <- fitdist(data = S, distr = "gamma", method = "mle"))
    
    mydata <- cbind(D=D, S=S)
    u1 <- pobs(mydata[,1]) 
    u2 <- pobs(mydata[,2])
    fitCopula <- BiCopSelect(u1, u2, familyset=NA)
    summary(fitCopula) 
    
    D_shape <- fg_d$estimate[1]
    D_rate <-  fg_d$estimate[2]
    S_shape <- fg_s$estimate[1]
    S_rate <-  fg_s$estimate[2]
    
    copula_dist <- mvdc(copula=rotCopula(claytonCopula(5.79)), margins=c("gamma","gamma"),
                        paramMargins=list(list(shape=D_shape, rate=D_rate),
                                          list(shape=S_shape, rate=S_rate)))
    
    sim <- rMvdc(n = 1e5,
                 copula_dist)
    
    plot(sim, col="red")
    points(D,S, col="black")
    legend('bottomright',c('Observed','Simulated'),col=c('black','red'),pch=21)
    

    And to answer the questions about specific calculations:

    ## F_D(d) for d=3
    mean(sim[,1] <=3)          ## simulated
    pgamma(3, D_shape, D_rate) ## theory
    
    ## F_S(s) for s=2
    mean(sim[,2] <=2)          ## simulated
    pgamma(2, S_shape, S_rate) ## theory
    
    ## C(F_D(d) for d=3 AND F_S(s) for s=2)
    ## simulated value:
    mean(sim[,1] <=3 & sim[,2] <=2)
    ## with copula:
    surv_clay <- rotCopula(claytonCopula(5.79))
    pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    
    ## P(D>=3 or S>=2)
    ## simulated
    mean(sim[,1] >= 3 | sim[,2] >=2)
    ## with copula:
    1-pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    
    ## In case you want:
    ## P(D<=3 or S<=2) = P(D<=3) + P(S<=2) - P(D<=3,S<=2)
    ## simulated:
    mean(sim[,1] <= 3 | sim[,2] <= 2)
    ## theory with copula:
    pgamma(3, D_shape, D_rate) + pgamma(2, S_shape, S_rate) - pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    
    

    Running the two chunks of code above gives the following output:

    > (fg_d <- fitdist(data = D, distr = "gamma", method = "mle"))
    Fitting of the distribution ' gamma ' by maximum likelihood 
    Parameters:
           estimate Std. Error
    shape 2.2082572  0.3831383
    rate  0.9775783  0.1903410
    > (fg_s <- fitdist(data = S, distr = "gamma", method = "mle"))
    Fitting of the distribution ' gamma ' by maximum likelihood 
    Parameters:
           estimate Std. Error
    shape 1.5628338 0.26500235
    rate  0.4494518 0.08964724
    > 
    > mydata <- cbind(D=D, S=S)
    > u1 <- pobs(mydata[,1]) 
    > u2 <- pobs(mydata[,2])
    > fitCopula <- BiCopSelect(u1, u2, familyset=NA)
    Warning message:
    In cor(x[(x[, 1] < 0) & (x[, 2] < 0), ]) : the standard deviation is zero
    > summary(fitCopula) 
    Family
    ------ 
    No:    13
    Name:  Survival Clayton
    
    Parameter(s)
    ------------
    par:  5.79
    
    Dependence measures
    -------------------
    Kendall's tau:    0.74 (empirical = 0.82, p value < 0.01)
    Upper TD:         0.89 
    Lower TD:         0 
    
    Fit statistics
    --------------
    logLik:  57.68 
    AIC:    -113.37 
    BIC:    -111.31 
    
    > 
    > D_shape <- fg_d$estimate[1]
    > D_rate <-  fg_d$estimate[2]
    > S_shape <- fg_s$estimate[1]
    > S_rate <-  fg_s$estimate[2]
    > 
    > copula_dist <- mvdc(copula=rotCopula(claytonCopula(5.79)), margins=c("gamma","gamma"),
    +                     paramMargins=list(list(shape=D_shape, rate=D_rate),
    +                                       list(shape=S_shape, rate=S_rate)))
    > 
    > sim <- rMvdc(n = 1e5,
    +              copula_dist)
    > 
    > plot(sim, col="red")
    > points(D,S, col="black")
    > legend('bottomright',c('Observed','Simulated'),col=c('black','red'),pch=21)
    

    enter image description here

    And --

    > ## F_D(d) for d=3
    > mean(sim[,1] <=3)          ## simulated
    [1] 0.74759
    > pgamma(3, D_shape, D_rate) ## theory
    [1] 0.746482
    > 
    > ## F_S(s) for s=2
    > mean(sim[,2] <=2)          ## simulated
    [1] 0.36233
    > pgamma(2, S_shape, S_rate) ## theory
    [1] 0.3617122
    > 
    > ## C(F_D(d) for d=3 AND F_S(s) for s=2)
    > ## simulated value:
    > mean(sim[,1] <=3 & sim[,2] <=2)
    [1] 0.362
    > ## with copula:
    > surv_clay <- rotCopula(claytonCopula(5.79))
    > pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    [1] 0.3615195
    > 
    > ## P(D>=3 or S>=2)
    > ## simulated
    > mean(sim[,1] >= 3 | sim[,2] >=2)
    [1] 0.638
    > ## with copula:
    > 1-pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    [1] 0.6384805
    
    > ## In case you want:
    > ## P(D<=3 or S<=2) = P(D<=3) + P(S<=2) - P(D<=3,S<=2)
    > ## simulated:
    > mean(sim[,1] <= 3 | sim[,2] <= 2)
    [1] 0.74792
    > ## theory with copula:
    > pgamma(3, D_shape, D_rate) + pgamma(2, S_shape, S_rate) - pCopula(c(pgamma(3, D_shape, D_rate),pgamma(2, S_shape, S_rate)), surv_clay)
    [1] 0.7466747