I've like to use optim() in my nls model, but doen't work. In my example:
Fisrt I create a data set
library(nls2)
#Data set
x <- c(1 ,10, 20, 30, 40, 50, 60, 70, 80, 90, 100)
y <- c(0.033823, 0.014779, 0.004698, 0.001584, -0.002017, -0.003436,
-0.000006, -0.004626, -0.004626, -0.004626, -0.004626)
dat<-cbind(y,x)
Second, I make a simple nls model
#Create a nls model
fo3<- y ~ a4*exp(-x/a5)
fm3 <- nls2(fo3, alg = "brute-force",
start = data.frame(a4 = c(-10, 10), a5 = c(-10, 10)),
control = nls.control(maxiter = 1000))
summary(fm3)
Now a try to create a bootstrap for the y ~ a4*exp(-x/a5)
model for study the model coefficients:
# bootstrap parametric
# nls model with par
#y = a4 * exp(-x/a5)
fstar<- function(dat,a) {
y= a[1]*exp(-x/a[2])
}
## Simulation 999 times
Nsim=999
RES1=NULL
for(i in 1:Nsim)
{
oo2=optim(c(0.97, 0.32),fstar, method="Nelder-Mead",control=list(maxit=10000))
RES1<-rbind(oo2$par)
write.table(RES1, file ="boot.out.mod", row.names=F, col.names=F,append=T)
}
#
And I have a bad output:
Error in fn(par, ...) : argument "a" is missing, with no default
Any member could help me please?
Thanks!
If a put sum() inside the function and change (dat,a) by (a,x,y), it's works!
# bootstrap parametric
# nls model with par
#y = a4 * exp(-x/a5)
fstar<- function(a,x,y) {
sum (y= a[1]*exp(-x/a[2]))
}
## Simulation 999 times
Nsim=999
RES1=NULL
for(i in 1:Nsim)
{
oo2=optim(c(0.97, 0.32),fstar, x=x, y=y, method="Nelder-Mead",control=list(maxit=10000))
RES1<-rbind(oo2$par)
write.table(RES1, file ="boot.out.mod", row.names=F, col.names=F,append=T)
}
#