please help. I have dataframe:
trade_type
0 -
1 Buy
2 -
3 -
4 Sell
5 Buy
6 -
7 Sell
8 -
9 Sell
10 -
I need rolling count all that != "-" until next change and store it in each row in new column "trade_ID", so it looks like this:
trade_type trade_ID
0 - 0
1 Buy 1
2 - 1
3 - 1
4 Sell 2
5 Buy 3
6 - 3
7 Sell 4
8 - 4
9 Sell 5
10 - 5
I tried to use:
df['trade_ID'] = (df.trade_type.shift(1) != df.trade_type).astype(int).cumsum()
but it counts "-" as new change so it doesn't work.
replace the -
by np.nan
(after import numpy as np
) and filter on series.notna()
and apply series.cumsum()
:
df['trade_ID']=df.trade_type.replace("-",np.nan).notna().cumsum()
print(df)
trade_type trade_ID
0 - 0
1 Buy 1
2 - 1
3 - 1
4 Sell 2
5 Buy 3
6 - 3
7 Sell 4
8 - 4
9 Sell 5
10 - 5