Search code examples
pythonpandasregressionstatastatsmodels

Generate statistical tables in Python and export to Excel


I want to generate in Python high quality statistical tables used for publications.

In Stata, one can use the community-contributed family of commands estout:

sysuse auto, clear

regress mpg weight
estimates store A

regress mpg weight price 
estimates store B

regress mpg weight price length
estimates store C

regress mpg weight price length displacement
estimates store D

esttab A B C D, se r2 nonumber mtitle("Model 1" "Model 2" "Model 3" "Model 4")

----------------------------------------------------------------------------
                  Model 1         Model 2         Model 3         Model 4   
----------------------------------------------------------------------------
weight           -0.00601***     -0.00582***     -0.00304        -0.00354   
               (0.000518)      (0.000618)       (0.00177)       (0.00212)   

price                          -0.0000935       -0.000173       -0.000174   
                               (0.000163)      (0.000168)      (0.000169)   

length                                            -0.0966         -0.0947   
                                                 (0.0577)        (0.0582)   

displacement                                                      0.00433   
                                                                (0.00983)   

_cons               39.44***        39.44***        49.68***        50.02***
                  (1.614)         (1.622)         (6.329)         (6.410)   
----------------------------------------------------------------------------
N                      74              74              74              74   
R-sq                0.652           0.653           0.666           0.667   
----------------------------------------------------------------------------
Standard errors in parentheses
* p<0.05, ** p<0.01, *** p<0.001

How can I run multiple regressions in Python and summarise the information into some nice tables?

I would also like to be export these in Excel.


Solution

  • You can use the summary_col() function from statsmodels:

    import pandas as pd        
    import statsmodels.api as sm
    from statsmodels.iolib.summary2 import summary_col
    
    df = pd.read_stata('http://www.stata-press.com/data/r14/auto.dta')
    df['cons'] = 1
    
    Y = df['mpg']
    X1 = df[['weight', 'cons']]
    X2 = df[['weight', 'price', 'cons']]
    X3 = df[['weight', 'price', 'length', 'cons']]
    X4 = df[['weight', 'price', 'length', 'displacement', 'cons']]
    
    reg1 = sm.OLS(Y, X1).fit()
    reg2 = sm.OLS(Y, X2).fit()
    reg3 = sm.OLS(Y, X3).fit()
    reg4 = sm.OLS(Y, X4).fit()
    
    results = summary_col([reg1, reg2, reg3, reg4],stars=True,float_format='%0.2f',
                      model_names=['Model\n(1)', 'Model\n(2)', 'Model\n(3)',  'Model\n(4)'],
                      info_dict={'N':lambda x: "{0:d}".format(int(x.nobs)),
                                 'R2':lambda x: "{:.2f}".format(x.rsquared)})
    

    The above code snippet will produce the following:

    print(results)
    
    ================================================
                  Model    Model    Model    Model  
                   (1)      (2)      (3)      (4)   
    ------------------------------------------------
    cons         39.44*** 39.44*** 49.68*** 50.02***
                 (1.61)   (1.62)   (6.33)   (6.41)  
    displacement                            0.00    
                                            (0.01)  
    length                         -0.10*   -0.09   
                                   (0.06)   (0.06)  
    price                 -0.00    -0.00    -0.00   
                          (0.00)   (0.00)   (0.00)  
    weight       -0.01*** -0.01*** -0.00*   -0.00*  
                 (0.00)   (0.00)   (0.00)   (0.00)  
    N            74       74       74       74      
    R2           0.65     0.65     0.67     0.67    
    ================================================
    Standard errors in parentheses.
    * p<.1, ** p<.05, ***p<.01
    

    Then you simply export:

    results_text = results.as_text()
    
    import csv
    resultFile = open("table.csv",'w')
    resultFile.write(results_text)
    resultFile.close()