I want to use the webworker to deal with some tasks.
Main Thread:
Firstly,I use tf.loadFrozenModel() to load pre-train model.Secondly,I use model.predict() to predict a image(size:512*512*4).When I use const data = await tf.toPixels(image)
to get the image pixels, it takes a lot of time, causing the UI operation to cause a jam. So I want to use webworker to deal with this problem.
const y=tf.tidy(() => {
......
var output=model.predict(
{[INPUT_NODE_NAME]: imageConcat}, OUTPUT_NODE_NAME);
......
return output
})
webworker.postMessage({headpackage:y});//y is the predicted image
In webworker:
importScripts('https://cdn.jsdelivr.net/npm/setimmediate@1.0.5/setImmediate.min.js')
importScripts('https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.10.3')
var dataMessage;
self.addEventListener('message', function (e) {
dataMessage = e.data;
a();
}, false);
async function a() {
const data = await tf.toPixels(dataMessage["headpackage"]);
//Change the value of image data
var image={
data:new Uint8Array(data),
width:512,
height:512
};
tfoutputtexture.image=image;
tfoutputtexture.flipY=true;
tfoutputtexture.needsUpdate = true;
}
Instead of sending the tensor object to the webworker, you can send a typed array.
From version 15 onward, the typed array has the same shape as the tensor using tensor.array
.
webworker.postMessage({headpackage:await y.array()})
// Webworker
tf.toPixels(tf.tensor(dataMessage["headpackage"]));
If you're using a version prior to 15, you will need to pass in both the typed array and its shape.
webworker.postMessage({headpackage:y.dataSync(), shape: y.shape})
// Webworker
tf.toPixels(tf.tensor(dataMessage["headpackage"], dataMessage["shape"]));