I would like to build a figure that has on its bottom x-axis one set of ticks and on its top x-axis another set of ticks that is aligned with the bottom ticks. Specifically in my case these are batches and epochs. For every n
batch points (not necessarily ticks) on the bottom I want an epoch tick on the top. Consider this example:
import numpy as np
import matplotlib.pyplot as plt
batches = np.arange(1,101)
epoch_ends = batches[[(i*10)-1 for i in range(1,11)]]
accuracy = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : x/len(batches))
loss = np.apply_along_axis(arr=batches, axis=0, func1d=lambda x : 1 - (x/len(batches)))
fig, ax1 = plt.subplots( nrows=1, ncols=1 )
ax2 = ax1.twinx()
ax3 = ax1.twiny()
ax1.set_xlabel('batches')
ax1.set_xticks(np.arange(1, len(batches)+1, 9))
ax1.set_ylabel('accuracy')
ax1.grid()
ax2.set_ylabel('loss')
ax2.set_yticklabels(np.linspace(3, 10, 9))
ax3.set_xlabel('epochs')
ax3.set_xticks(epoch_ends)
ax3.set_xticklabels(range(1, len(epoch_ends)+1))
acc_plt = ax1.plot(batches, accuracy, color='red', label='acc')
loss_plt = ax2.plot(batches, loss, color='blue', label='loss')
lns = acc_plt+loss_plt
labs = [l.get_label() for l in lns]
ax1.legend(lns, labs, loc=2)
plt.show()
batches
and epoch_ends
respectively look like this
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100]
[ 10 20 30 40 50 60 70 80 90 100]
So I would like the epoch tick 1 to align with batch x-coorrdiante 10, 2 with 20, etc.
But as you can see in the picture, they do not line up.
What do I need to change in my code to make this work?
Here is one way to align them. The idea is following:
ax1
) ax3.set_xlim(ax1.get_xlim())
ax3.set_xticklabels()
.Here is the code: I am replacing the parts which are already in your code by a comment #
.
# imports and define data and compute accuracy and loss here
# Initiate figure and axis objects here
ax1.set_xlabel('batches')
ax1.set_xticks(np.arange(1, len(batches)+1, 9))
ax1.set_ylabel('accuracy')
ax1.grid()
acc_plt = ax1.plot(batches, accuracy, color='red', label='acc')
loss_plt = ax2.plot(batches, loss, color='blue', label='loss')
ax2.set_ylabel('loss')
ax2.set_yticklabels(np.linspace(3, 10, 9))
new_tick_locations = np.arange(1, 11)*10
new_tick_labels = range(1, 11)
ax3.set_xlabel('epochs')
ax3.set_xlim(ax1.get_xlim())
ax3.set_xticks(new_tick_locations)
ax3.set_xticklabels(new_tick_labels)
# Set legends and show the plot