I have this decoder model, which is supposed to take batches of sentence embeddings (batchsize = 50, hidden size=300) as input and output a batch of one hot representation of predicted sentences:
class DecoderLSTMwithBatchSupport(nn.Module):
# Your code goes here
def __init__(self, embedding_size,batch_size, hidden_size, output_size):
super(DecoderLSTMwithBatchSupport, self).__init__()
self.hidden_size = hidden_size
self.batch_size = batch_size
self.lstm = nn.LSTM(input_size=embedding_size,num_layers=1, hidden_size=hidden_size, batch_first=True)
self.out = nn.Linear(hidden_size, output_size)
self.softmax = nn.LogSoftmax(dim=1)
def forward(self, my_input, hidden):
print(type(my_input), type(hidden))
output, hidden = self.lstm(my_input, hidden)
output = self.softmax(self.out(output[0]))
return output, hidden
def initHidden(self):
return Variable(torch.zeros(1, self.batch_size, self.hidden_size)).cuda()
However, when I run it using:
decoder=DecoderLSTMwithBatchSupport(vocabularySize,batch_size, 300, vocabularySize)
decoder.cuda()
decoder_input=np.zeros([batch_size,vocabularySize])
for i in range(batch_size):
decoder_input[i] = embeddings[SOS_token]
decoder_input=Variable(torch.from_numpy(decoder_input)).cuda()
decoder_hidden = (decoder.initHidden(),decoder.initHidden())
for di in range(target_length):
decoder_output, decoder_hidden = decoder(decoder_input.view(1,batch_size,-1), decoder_hidden)
I get he following error:
Expected hidden[0] size (1, 1, 300), got (1, 50, 300)
What am I missing in order to make the model expect batched hidden states?
When you create the LSTM
, the flag batch_first
is not necessary, because it assumes a different shape of your input. From the docs:
If True, then the input and output tensors are provided as (batch, seq, feature). Default: False
change the LSTM creation to:
self.lstm = nn.LSTM(input_size=embedding_size, num_layers=1, hidden_size=hidden_size)
Also, there is a type error. When you create the decoder_input
using torch.from_numpy()
it has a dtype=torch.float64
, while decoder_input
has as default dtype=torch.float32
. Change the line where you create the decoder_input
to something like
decoder_input = Variable(torch.from_numpy(decoder_input)).cuda().float()
With both changes, it is supposed to work fine :)