I am using Transfer learning for recognizing objects. I used trained VGG16 model as the base model and added my classifier on top of it using Keras. I then trained the model on my data, the model works well. I want to see the feature generated by the intermediate layers of the model for the given data. I used the following code for this purpose:
def ModeloutputAtthisLayer(model, layernme, imgnme, width, height):
layer_name = layernme
intermediate_layer_model = Model(inputs=model.input,
outputs=model.get_layer(layer_name).output)
img = image.load_img(imgnme, target_size=(width, height))
imageArray = image.img_to_array(img)
image_batch = np.expand_dims(imageArray, axis=0)
processed_image = preprocess_input(image_batch.copy())
intermediate_output = intermediate_layer_model.predict(processed_image)
print("outshape of ", layernme, "is ", intermediate_output.shape)
In the code, I used np.expand_dims
to add one extra dimension for the batch as the input matrix to the network should be of the form (batchsize, height, width, channels)
. This code works fine. The shape of the feature vector is 1, 224, 224, 64
.
Now I wish to display this as image, for this I understand there is an additional dimension added as batch so I should remove it. Following this I used the following lines of the code:
imge = np.squeeze(intermediate_output, axis=0)
plt.imshow(imge)
However it throws an error:
"Invalid dimensions for image data"
I wonder how can I display the extracted feature vector as an image. Any suggestion please.
Your feature shape is (1,224,224,64)
, you cannot directly plot a 64
channel image. What you can do is plot the individual channels independently like following
imge = np.squeeze(intermediate_output, axis=0)
filters = imge.shape[2]
plt.figure(1, figsize=(32, 32)) # plot image of size (32x32)
n_columns = 8
n_rows = math.ceil(filters / n_columns) + 1
for i in range(filters):
plt.subplot(n_rows, n_columns, i+1)
plt.title('Filter ' + str(i))
plt.imshow(imge[:,:,i], interpolation="nearest", cmap="gray")
This will plot 64
images in 8
rows and 8
columns.