Python beginner/first poster here.
I'm running into trouble adding color bars to scatter plots. I have two types of plot: one that shows all the data color-coded by date, and one that shows just the maximum values of my data color-coded by date. In the first case, I can use the df.index (which is datetime) to make my color bar, but in the second case, I am using df2['col'].idxmax to generate the colors because my df2 is a df.groupby object which I'm using to generate the daily maximums in my data, and it does not have an accessible index.
For the first type of plot, I have succeeded in generating a date-based color bar with the code below, cobbled together from online examples:
fig, ax = plt.subplots(1,1, figsize=(20,20))
smap=plt.scatter(df.col1, df.col2, s=140,
c=[date2num(i.date()) for i in df.index],
marker='.')
cb = fig.colorbar(smap, orientation='vertical',
format=DateFormatter('%d %b %y'))
However for the second type of plot, where I am trying to use df2['col'].idxmax to create the date series instead of df.index, the following does not work:
for n in cols1:
for m in cols2:
fig, ax = plt.subplots(1,1, figsize=(15,15))
maxTimes=df2[n].idxmax()
PlottableTimes=maxTimes.dropna() #some NaNs in the
#.idxmax series were giving date2num trouble
smap2=plt.scatter(df2[n].max(), df2[m].max(),
s=160, c=[date2num(i.date()) for i in PlottableTimes],
marker='.')
cb2 = fig.colorbar(smap2, orientation='vertical',
format=DateFormatter('%d %b %y'))
plt.show()
The error is: 'length of rgba sequence should be either 3 or 4'
Because the error was complaining of the color argument, I separately checked the output of the color (that is, c=) arguments in the respective plotting commands, and both look similar to me, so I can't figure out why one color argument works and the other doesn't:
one that works:
[736809.0, 736809.0, 736809.0, 736809.0, 736809.0, 736809.0, 736809.0, 736809.0, 736809.0, 736809.0, ...]
one that doesn't work:
[736845.0, 736846.0, 736847.0, 736848.0, 736849.0, 736850.0, 736851.0, 736852.0, 736853.0, 736854.0, ...]
Any suggestions or explanations? I'm running python 3.5.2. Thank you in advance for helping me understand this.
Edit 1: I made the following example for others to explore, and in the process realized the crux of the issue is different than my first question. The code below works the way I want it to:
df=pd.DataFrame(np.random.randint(low=0, high=10, size=(169, 8)),
columns=['a', 'b', 'c', 'd', 'e','f','g','h']) #make sample data
date_rng = pd.date_range(start='1/1/2018', end='1/8/2018', freq='H')
df['i']=date_rng
df = df.set_index('i') #get a datetime index
df['ts']=date_rng #get a datetime column to group by
from pandas import Grouper
df2=df.groupby(Grouper(key='ts', freq='D'))
for n in ['a','b','c','d']: #now make some plots
for m in ['e','f','g','h']:
print(m)
print(n)
fig, ax = plt.subplots(1,1, figsize=(5,5))
maxTimes=df2[n].idxmax()
PlottableTimes=maxTimes.dropna()
smap=plt.scatter(df2[n].max(), df2[m].max(), s=160,
c=[date2num(i.date()) for i in PlottableTimes],
marker='.')
cb = fig.colorbar(smap, orientation='vertical',
format=DateFormatter('%d %b %y'))
plt.show()
The only difference between my real data and this example is that my real data has many NaNs scattered throughout. So, I think what is going wrong is that the 'c=' argument isn't long enough for the plotting command to interpret it as covering the whole date range...? For example, if I manually put in the output of the c= command, I get the following code which also works:
for n in ['a','b','c','d']:
for m in ['e','f','g','h']:
print(m)
print(n)
fig, ax = plt.subplots(1,1, figsize=(5,5))
maxTimes=df2[n].idxmax()
PlottableTimes=maxTimes.dropna()
smap=plt.scatter(df2[n].max(), df2[m].max(), s=160,
c=[736809.0, 736810.0, 736811.0, 736812.0, 736813.0, 736814.0, 736815.0, 736816.0],
marker='.')
cb = fig.colorbar(smap, orientation='vertical',
format=DateFormatter('%d %b %y'))
plt.show()
But, if I shorten the c= array by some amount, to emulate what is happening in my code when NaNs are being dropped from idxmax, it gives the same error I am seeing:
for n in ['a','b','c','d']:
for m in ['e','f','g','h']:
print(m)
print(n)
fig, ax = plt.subplots(1,1, figsize=(5,5))
maxTimes=df2[n].idxmax()
PlottableTimes=maxTimes.dropna()
smap=plt.scatter(df2[n].max(), df2[m].max(), s=160,
c=[736809.0, 736810.0, 736811.0, 736812.0, 736813.0, 736814.0],
marker='.')
cb = fig.colorbar(smap, orientation='vertical',
format=DateFormatter('%d %b %y'))
plt.show()
So this means the real question is: how can I grab the grouper column after grouping from the groupby object, when none of the columns appear to be grab-able with df2.col? I would like to be able to grab 'ts' from the following and use it to be the color data, instead of using idxmax:
df2['a'].max()
ts
2018-01-01 9
2018-01-02 9
2018-01-03 9
2018-01-04 9
2018-01-05 9
2018-01-06 9
2018-01-07 9
2018-01-08 8
Freq: D, Name: a, dtype: int64
Essentially, your Grouper call is similar to indexing on your date time column and callingpandas.DataFrame.resample
specifying the aggregate function:
df.set_index('ts').resample('D').max()
# a b c d e f g h
# ts
# 2018-01-01 9 9 8 9 9 9 9 9
# 2018-01-02 9 9 9 9 9 9 9 9
# 2018-01-03 9 9 9 9 9 9 9 9
# 2018-01-04 9 9 9 9 9 9 9 9
# 2018-01-05 9 9 9 9 9 9 9 9
# 2018-01-06 9 9 9 8 9 9 9 9
# 2018-01-07 9 9 9 9 9 9 9 9
# 2018-01-08 2 8 6 3 1 3 2 7
Therefore, the return of df2['a'].max()
is a Pandas Resampler object, very similar to a Pandas Series and hence carries the index property which you can use for color bar specification:
df['a'].max().index
# DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
# '2018-01-05', '2018-01-06', '2018-01-07', '2018-01-08'],
# dtype='datetime64[ns]', name='ts', freq='D')
From there you can pass into date2num
without list comprehension:
date2num(df2['a'].max().index)
# array([736695., 736696., 736697., 736698., 736699., 736700., 736701., 736702.])
Altogether, simply use above in loop without needing maxTimes or PlottableTimes:
fig, ax = plt.subplots(1, 1, figsize = (5,5))
smap = plt.scatter(df2[n].max(), df2[m].max(), s = 160,
c = date2num(df2[n].max().index),
marker = '.')
cb = fig.colorbar(smap, orientation = 'vertical',
format = DateFormatter('%d %b %y'))