I am trying to import an Excel spreadsheet in to R (via read.xlsx2()
). The Excel data has a date column. That date column contains mixed types of date formats e.g. some rows are 42669
, and some are in date format e.g. 26/10/2016
.
read.xlsx2()
reads it in as a factor, so I converted it to as.Date using the code below. This works for all the dates in numeric form (e.g. 42669
) but R warns me that it added some NA
s (for the ones in format 26/10/2016
). My question is how can I import the excel data with proper dates for all the variable i.e. tell R that there is mixed data?
library(xlsx)
#Import excel file
df <- read.xlsx2(mydata, 1, header=true)
#Output = recd_date : Factor w/ 590 levels "", "26/10/2016", "42669" ...
levels(df$recd_date)
#Output = [1] "" "26/10/2016" "42669" ...
#This works for numeric dates:
df$recd_date <- as.Date( as.numeric (as.character(df$recd_date) ),origin="1899-12-30")
#Output = recd_date : Date, format "2016-10-26" ...
#but it doesn't work for dd/mm/yyyy dates, R just replaces these with NA
We could apply a function to clean date if necessary, basically like this:
cleanDate <- function(x) {
if (all(nchar(df2$date.mix) < 10)) {
cd <- as.Date(x)
} else {
cd <- do.call(c,
lapply(x, function(i)
if (nchar(i) < 10)
as.Date(as.numeric(i), origin="1970-01-01")
else as.Date(i)))
}
return(cd)
}
Example
# generate test df
df1 <- data.frame(date.chr=as.character(as.Date(1:3, origin=Sys.Date())),
date.num=as.numeric(as.Date(1:3, origin=Sys.Date())),
date.mix=as.character(as.Date(1:3, origin=Sys.Date())),
stringsAsFactors=FALSE)
df1[2, 3] <- as.character(as.numeric(as.Date(df1[2, 1])))
> df1
date.chr date.num date.mix
1 2019-02-01 17928 2019-02-01
2 2019-02-02 17929 17929
3 2019-02-03 17930 2019-02-03
# write it to working directory
library(xlsx)
write.xlsx2(df1, "df1.xlsx")
# read it
# we use opt. `stringsAsFactors=FALSE` to prevent generation of factors
df2 <- read.xlsx2("df1.xlsx", 1, stringsAsFactors=FALSE)
> df2
X. date.chr date.num date.mix
1 1 2019-02-01 17928 2019-02-01
2 2 2019-02-02 17929 17929
3 3 2019-02-03 17930 2019-02-03
Now we apply the function using lapply()
.
date.cols <- c("date.chr", "date.num", "date.mix") # select date columns
df2[date.cols] <- lapply(df2[date.cols], cleanDate)
Result
> df2
X. date.chr date.num date.mix
1 1 2019-02-01 2019-02-01 2019-02-01
2 2 2019-02-02 2019-02-02 2019-02-02
3 3 2019-02-03 2019-02-03 2019-02-03