I have a grid containing some data in polar coordinates, simulating data obtained from a LIDAR for the SLAM problem. Each row in the grid represents the angle, and each column represents a distance. The values contained in the grid store a weighted probability of the occupancy map for a Cartesian world.
After converting to Cartesian Coordinates, I obtain something like this:
This mapping is intended to work in a FastSLAM application, with at least 10 particles. The performance I am obtaining isn't good enough for a reliable application.
I have tried with nested loops, using the scipy.ndimage.geometric_transform library and accessing directly the grid with pre-computed coordinates.
In those examples, I am working with a 800x800 grid.
Nested loops: aprox 300ms
i = 0
for scan in scans:
hit = scan < laser.range_max
if hit:
d = np.linspace(scan + wall_size, 0, num=int((scan+ wall_size)/cell_size))
else:
d = np.linspace(scan, 0, num=int(scan/cell_size))
for distance in distances:
x = int(pos[0] + d * math.cos(angle[i]+pos[2]))
y = int(pos[1] + d * math.sin(angle[i]+pos[2]))
if distance > scan:
grid_cart[y][x] = grid_cart[y][x] + hit_weight
else:
grid_cart[y][x] = grid_cart[y][x] + miss_weight
i = i + 1
Scipy library (Described here): aprox 2500ms (Gives a smoother result since it interpolates the empty cells)
grid_cart = S.ndimage.geometric_transform(weight_mat, polar2cartesian,
order=0,
output_shape = (weight_mat.shape[0] * 2, weight_mat.shape[0] * 2),
extra_keywords = {'inputshape':weight_mat.shape,
'origin':(weight_mat.shape[0], weight_mat.shape[0])})
def polar2cartesian(outcoords, inputshape, origin):
"""Coordinate transform for converting a polar array to Cartesian coordinates.
inputshape is a tuple containing the shape of the polar array. origin is a
tuple containing the x and y indices of where the origin should be in the
output array."""
xindex, yindex = outcoords
x0, y0 = origin
x = xindex - x0
y = yindex - y0
r = np.sqrt(x**2 + y**2)
theta = np.arctan2(y, x)
theta_index = np.round((theta + np.pi) * inputshape[1] / (2 * np.pi))
return (r,theta_index)
Pre-computed indexes: 80ms
for i in range(0, 144000):
gird_cart[ys[i]][xs[i]] = grid_polar_1d[i]
I am not very used to python and Numpy, and I feel I am skipping an easy and fast way to solve this problem. Are there any other alternatives to solve that?
Many thanks to you all!
I came across a piece of code that seems to behave x10 times faster (8ms):
angle_resolution = 1
range_max = 400
a, r = np.mgrid[0:int(360/angle_resolution),0:range_max]
x = (range_max + r * np.cos(a*(2*math.pi)/360.0)).astype(int)
y = (range_max + r * np.sin(a*(2*math.pi)/360.0)).astype(int)
for i in range(0, int(360/angle_resolution)):
cart_grid[y[i,:],x[i,:]] = polar_grid[i,:]