I am using tf eager mode, and trying to create a GAN model. To made this, i created a class as follows. I tried sending array specificly, found in keras issues, but that also didn't worked?
class vanillaGAN(tf.keras.Model):
"""Vanilla GAN"""
def __init__(self, noise_dims, input_dims):
"""Define all layer used in network"""
super(vanillaGAN, self).__init__()
self.disc1 = tf.keras.layers.Dense(128, activation='relu')
self.disc2 = tf.keras.layers.Dense(1)#, activation='sigmoid')
self.gen1 = tf.keras.layers.Dense(128, activation='relu')
self.gen2 = tf.keras.layers.Dense(784)#, activation='sigmoid')
def gen_forward(self, x):
"""Forward Pass for Generator"""
x = self.gen1(x)
x = self.gen2(x)
return x
def dis_forward(self, x):
"""Forward Pass for Discriminator"""
x = self.disc1(x)
x = self.disc2(x)
return x
Now, on using following script:
def sample(batch_size, dims):
return np.random.uniform(size=(batch_size, dims))
gan = vanillaGAN(noise_dims=40, input_dims=784)
noise = sample(32,40)
#gan.gen_forward(np.array(noise))
gan.gen_forward(noise)}
I am getting following error
----------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-43-11c01bb2233d> in <module>
1 noise = sample(32,40)
----> 2 gan.gen_forward(np.array(noise))
<ipython-input-20-22ce18fda8ff> in gen_forward(self, x)
12 def gen_forward(self, x):
13 """Forward Pass for Generator"""
---> 14 x = self.gen1(x)
15 x = self.gen2(x)
16 return x
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
728
729 # Check input assumptions set before layer building, e.g. input rank.
--> 730 self._assert_input_compatibility(inputs)
731 if input_list and self._dtype is None:
732 try:
~/anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/engine/base_layer.py in _assert_input_compatibility(self, inputs)
1461 spec.min_ndim is not None or
1462 spec.max_ndim is not None):
-> 1463 if x.shape.ndims is None:
1464 raise ValueError('Input ' + str(input_index) + ' of layer ' +
1465 self.name + ' is incompatible with the layer: '
AttributeError: 'tuple' object has no attribute 'ndims'
please, if someone can help.
Note that the model input should be a tensor, so running a model would be like:
gan = vanillaGAN(noise_dims=40, input_dims=784)
noise = sample(32,40)
# define the tensors
noise_tensor = tf.placeholder(tf.float32, shape=[32,40])
gen_output = gan.gen_forward(noise_tensor)
dis_output = gan.dis_forward(noise_tensor)
# define the initializer
# Ref: https://stackoverflow.com/questions/45139423/tensorflow-error-failedpeconditionerror-attempting-to-use-uninitialized-variab
init = tf.global_variables_initializer()
# run the graph
with tf.Session() as sess:
sess.run(init)
gen_output = sess.run(gen_output, feed_dict = {noise_tensor:noise})
dis_output = sess.run(dis_output, feed_dict = {noise_tensor:noise})
print(gen_output.shape)
print(dis_output.shape)
The error message is saying that numpy array doesn't have the attribute xxx.shape.ndims
.
Experiment:
xxx.shape.ndims
of a numpy array by noise.shape.ndims
:Traceback (most recent call last):
File "", line 1, in noise.shape.ndims
AttributeError: 'tuple' object has no attribute 'ndims'
xxx.shape.ndims
of a tensor by noise_tensor.shape.ndims
:2