For each row of column "Response", I would like to check if the 5 rows below it have "Response"-values (i.e. have no NAs) and if so, then I would like to calculate the mean and standard deviation of those 5 rows below. If any row, in those 5 rows below, has a missing "Response"-value (i.e. NA), then the final output should be "NA" (since I want the means and stdev to be calculated for n=5 points/values).
A sample of the Input.data looks like this:
Response
NA
1
2
3
NA
1
1
2
3
4
5
Here is the code I tried, which did not give the right solution:
Input.data$count.lag <- rollapplyr(Input.data[,c("Response")],list(-(4:0)),length, fill=NA)
Input.data$stdev <- ifelse(Input.data$count.lag <5, "NA",
rollapplyr(Input.data[,c("Response")],list(-(4:0)),sd,fill=NA))
Input.data$mean <- ifelse(Input.data$count.lag <5, "NA",
rollapplyr(Input.data[,c("Response")],list(-(4:0)),mean,fill=NA))
it gave the following, which was not what I am after:
Response count.lag stdev mean
NA NA NA NA
1 NA NA NA
2 NA NA NA
3 NA NA NA
NA 5 NA NA
1 5 NA NA
1 5 NA NA
2 5 NA NA
3 5 NA NA
4 5 1.303840 2.2
5 5 1.581139 3.0
This is how the output should have been:
Response count.lag stdev mean
NA 4 NA NA
1 4 NA NA
2 4 NA NA
3 4 NA NA
NA 5 1.303840 2.2
1 5 1.581139 3.0
1 5 1.581139 4.0
2 5 1.581139 5.0
3 5 1.581139 6.0
4 5 1.581139 7.0
5 5 1.581139 8.0
Can someone please suggest where the errors are and/or an alternative solution that works? Thank you!
A possible approach:
Input[, c("count.lag","stdev","mean") :=
transpose(lapply(1L:.N, function(n) {
x <- Response[(n+1L):min(n+5L, .N)]
c(sum(!is.na(x)), sd(x), mean(x))
}))]
output:
Response count.lag stdev mean
1: NA 4 NA NA
2: 1 4 NA NA
3: 2 4 NA NA
4: 3 4 NA NA
5: NA 5 1.3038405 2.2
6: 1 5 1.5811388 3.0
7: 1 5 1.5811388 4.0
8: 2 5 1.5811388 5.0
9: 3 5 1.5811388 6.0
10: 4 5 1.5811388 7.0
11: 5 5 1.5811388 8.0
12: 6 4 1.2909944 8.5
13: 7 3 1.0000000 9.0
14: 8 2 0.7071068 9.5
15: 9 1 NA 10.0
16: 10 1 NA NA
data:
Input <- fread("Response
NA
1
2
3
NA
1
1
2
3
4
5
6
7
8
9
10")
edit: Or as per MichaelChirico's suggestion using shift
. The ending values are different and depends on how OP wants the ending values to be handled.
#requires data.table version >= 1.12.0 to use negative shifts (else use type='lag' with positive integers
Input[, c("count.lag", "stdev", "mean") :=
.SD[, shift(Response, -1L:-5L)][,
.(apply(.SD, 1L, function(x) sum(!is.na(x))),
apply(.SD, 1L, sd),
apply(.SD, 1L, mean))]
]
output:
Response count.lag stdev mean
1: NA 4 NA NA
2: 1 4 NA NA
3: 2 4 NA NA
4: 3 4 NA NA
5: NA 5 1.303840 2.2
6: 1 5 1.581139 3.0
7: 1 5 1.581139 4.0
8: 2 5 1.581139 5.0
9: 3 5 1.581139 6.0
10: 4 5 1.581139 7.0
11: 5 5 1.581139 8.0
12: 6 4 NA NA
13: 7 3 NA NA
14: 8 2 NA NA
15: 9 1 NA NA
16: 10 0 NA NA