I'm trying to solve differential equation using python scipy.integrate.odeint
function and compare it to the mathcad solution.
So my equition is u'' + 0.106u'+ 0.006u = 0,
the problem I'm stuck in is the initial conditions which are u(0)=0 and u'(1)=1
. I don't understand how to set u'(1)=1
.
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import numpy as np
def eq(u,t):
return [u[1], -0.106*u[1]-0.006*u[0]] #return u' and u''
time = np.linspace(0, 10)
u0 = [0,1] # initial conditions
Z = odeint(eq,u0,time) </code>
plt.plot(time, Z)
plt.xticks(range(0,10))
plt.grid(True)
plt.xlabel('time')
plt.ylabel('u(t)')
plt.show()
u''(t) + 0.106*u'(t) +0.006*u(t) = 0
u(0) = 0
u'(1) = 1
u := Odesolve(t,10)
https://pp.userapi.com/c850032/v850032634/108079/He1JsQonhpk.jpg
which is etalon.
https://pp.userapi.com/c850032/v850032634/10809c/KB_HDekc8Fk.jpg
which does look similar, but clearly the u(t) is incorrect.
This is a boundary value problem, you need to use solve_bvp
from scipy.integrate import solve_bvp, solve_ivp
import matplotlib.pyplot as plt
import numpy as np
def eq(t,u): return [u[1], -0.106*u[1]-0.006*u[0]] #return u' and u''
def bc(u0,u1): return [u0[0], u1[1]-1 ]
res = solve_bvp(eq, bc, [0,1], [[0,1],[1,1]], tol=1e-3)
print res.message
# plot the piecewise polynomial interpolation,
# using the last segment for extrapolation
time = np.linspace(0, 10, 501)
plt.plot(time, res.sol(time)[0], '-', lw=2, label="BVP extrapolated")
# solve the extended solution as IVP solution on [1,10]
ivp = solve_ivp(eq, time[[0,-1]], res.y[:,0], t_eval=time)
plt.plot(time, ivp.y[0], '-', lw=2, label="IVP from BVP IC")
# plot decorations
plt.xticks(range(0,11))
plt.grid(True)
plt.legend()
plt.xlabel('time')
plt.ylabel('u(t)')
plt.show()
Note that the continuation is by extrapolation from the given interval [0,1] to [0,10] and that the values at 1 are with a tolerance of 1e-3. So one could get a better result over the large interval by using solve_ivp
with the computed values at t=1 as initial values. The difference in this example is about 0.01.