Walter Zucchini in his book Hidden Markov Models for Time Series An Introduction Using R, in chapter 8 page 129, adjusts a Poisson HMM using R2OpenBUGS, then I show the code. I am interested in adjusting this same model but with rstan, but since I am new using this package, I am not clear about the syntax any suggestion.
data
dat <- read.table("http://www.hmms-for-time-series.de/second/data/earthquakes.txt")
RJAGS
library(R2jags)
library(rjags)
HMM <- function(){
for(i in 1:m){
delta[i] <- 1/m
v[i] <- 1}
s[1] ~ dcat(delta[])
for(i in 2:100){
s[i] ~ dcat(Gamma[s[i-1],])}
states[1] ~ dcat(Gamma[s[100],])
x[1]~dpois(lambda[states[1]])
for(i in 2:n){
states[i]~dcat(Gamma[states[i-1],])
x[i]~dpois(lambda[states[i]])}
for(i in 1:m){
tau[i]~dgamma(1,0.08)
Gamma[i,1:m]~ddirch(v[])}
lambda[1]<-tau[1]
for(i in 2:m){
lambda[i]<-lambda[i-1]+tau[i]}}
x = dat[,2]
n = dim(dat)[1]
m = 2
mod = jags(data = list("x", "n", "m" ), inits = NULL, parameters.to.save = c("lambda","Gamma"),
model.file = HMM, n.iter = 10000, n.chains = 1)
output
mod
Inference for Bugs model at "C:/Users/USER/AppData/Local/Temp/RtmpOkrM6m/model36c8429c5442.txt", fit using jags,
1 chains, each with 10000 iterations (first 5000 discarded), n.thin = 5
n.sims = 1000 iterations saved
mu.vect sd.vect 2.5% 25% 50% 75% 97.5%
Gamma[1,1] 0.908 0.044 0.805 0.884 0.915 0.940 0.971
Gamma[2,1] 0.155 0.071 0.045 0.105 0.144 0.195 0.325
Gamma[1,2] 0.092 0.044 0.029 0.060 0.085 0.116 0.195
Gamma[2,2] 0.845 0.071 0.675 0.805 0.856 0.895 0.955
lambda[1] 15.367 0.763 13.766 14.877 15.400 15.894 16.752
lambda[2] 26.001 1.321 23.418 25.171 25.956 26.843 28.717
deviance 645.351 8.697 630.338 639.359 644.512 650.598 665.405
DIC info (using the rule, pD = var(deviance)/2)
pD = 37.8 and DIC = 683.2
DIC is an estimate of expected predictive error (lower deviance is better).
RSTAN
library("rstan")
rstan_options(auto_write = TRUE)
options(mc.cores = parallel::detectCores())
HMM <- '
data{
int<lower=0> n; // number of observations (length)
int<lower=0> x[n]; // observations
int<lower=1> m; // number of hidden states
}
parameters{
simplex[m] Gamma[n]; // t.p.m
vector[m] lambda; // mean of poisson ordered
}
model{
vector[m] delta[m];
vector[m] v[m];
vector[100] s[100];
vector[n] states[n];
vector[m] tau;
for(i in 1:m){
delta[i] = 1/m;
v[i] = 1;}
s[1] ~ categorical(delta[]);
for(i in 2:100){
s[i] ~ categorical(Gamma[s[i-1],]);}
states[1] ~ categorical(Gamma[s[100],]);
x[1] ~ poisson(lambda[states[1]]);
for(i in 2:n){
states[i] ~ categorical(Gamma[states[i-1],]);
x[i] ~ poisson(lambda[states[i]])};
for(i in 1:m){
tau[i] ~ gamma(1,0.08);
Gamma[i,1:m] ~ dirichlet(v[]);}
lambda[1] = tau[1];
for(i in 2:m){
lambda[i] = lambda[i-1] + tau[i]};}'
data <- list(n = dim(dat)[1], x = dat[,2], m = 2)
system.time(mod2 <- stan(model_code = HMM, data = data, chains = 1, iter = 1000, thin = 4))
mod2
however, an error occurs when running the stan model.
Using the forward algorithm, and as priors the gamma distribution, for the means vector of the dependent states, and imposing the restriction on the simplex[m]
object, for the probability transition matrix, in which the sum by rows equals 1 The following estimates are obtained.
dat <- read.table("http://www.hmms-for-time-series.de/second/data/earthquakes.txt")
stan.data <- list(n=dim(dat)[1], m=2, x=dat$V2)
PHMM <- '
data {
int<lower=0> n; // length of the time series
int<lower=0> x[n]; // data
int<lower=1> m; // number of states
}
parameters{
simplex[m] Gamma[m]; // tpm
positive_ordered[m] lambda; // mean of poisson - ordered
}
model{
vector[m] log_Gamma_tr[m]; // log, transposed tpm
vector[m] lp; // for forward variables
vector[m] lp_p1; // for forward variables
lambda ~ gamma(0.1, 0.01); // assigning exchangeable priors
//(lambdas´s are ordered for sampling purposes)
// transposing tpm and taking the log of each entry
for(i in 1:m)
for(j in 1:m)
log_Gamma_tr[j, i] = log(Gamma[i, j]);
lp = rep_vector(-log(m), m); //
for(i in 1:n) {
for(j in 1:m)
lp_p1[j] = log_sum_exp(log_Gamma_tr[j] + lp) + poisson_lpmf(x[i] | lambda[j]);
lp = lp_p1;
}
target += log_sum_exp(lp);
}'
model <- stan(model_code = PHMM, data = stan.data, iter = 1000, chains = 1)
print(model,digits_summary = 3)
output
Inference for Stan model: 11fa5b74e5bea2ca840fe5068cb01b7b.
1 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=500.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
Gamma[1,1] 0.907 0.002 0.047 0.797 0.882 0.913 0.941 0.972 387 0.998
Gamma[1,2] 0.093 0.002 0.047 0.028 0.059 0.087 0.118 0.203 387 0.998
Gamma[2,1] 0.147 0.004 0.077 0.041 0.090 0.128 0.190 0.338 447 0.999
Gamma[2,2] 0.853 0.004 0.077 0.662 0.810 0.872 0.910 0.959 447 0.999
lambda[1] 15.159 0.044 0.894 13.208 14.570 15.248 15.791 16.768 407 1.005
lambda[2] 25.770 0.083 1.604 22.900 24.581 25.768 26.838 28.940 371 0.998
lp__ -350.267 0.097 1.463 -353.856 -351.091 -349.948 -349.155 -348.235 230 1.001
Samples were drawn using NUTS(diag_e) at Wed Jan 16 00:35:06 2019.
For each parameter, n_eff is a crude measure of effective sample size,
and Rhat is the potential scale reduction factor on split chains (at
convergence, Rhat=1).