I'm having a hard time understanding the implementation of client code with the factory method. I understand the overall use of Abstract Factories but my issue is I want the Factory to figure out the correct object to instantiate at runtime, but every implementation I see involves passing an enum or some other value to the constructor.
This is my current design
using System;
namespace FactoryTest.Jobs
{
public class ExchangeProvider1 : IExchangeProvider
{
public void Buy()
{
Console.WriteLine("Buying on Exchange1!");
}
}
}
using System;
namespace FactoryTest.Jobs
{
public class ExchangeProvider2 : IExchangeProvider
{
public void Buy()
{
Console.WriteLine("Buying on Exchange2");
}
}
}
public interface IExchangeFactory
{
}
public interface IExchangeProvider
{
void Buy();
}
public class ExchangeFactory : IExchangeFactory
{
public static IExchangeProvider CreateExchange<T>() where T : IExchangeProvider
{
return Activator.CreateInstance<T>();
}
public static IExchangeProvider CreateExchange(string exchangeName)
{
return (IExchangeProvider) Activator.CreateInstance<IExchangeProvider>();
}
}
The problem is that I'm trying to have the factory build the correct provider based on details the user fills out in a web form. On hitting create I want to the factory to instantiate the correct provider and run the correct logic. But with this implementation Im forced to do something like
var provider = ExchangeFactory.CreateExchange<Exchange1>();
When I really want to be able to get the Exchange Type from the user at runtime from the web form and pass it to the factory
//Receive IExchangeType from user submitting web form
var provider = ExchangeFactory.CreateExchange<IExchangeType>();
Is this possible? I'm wondering (or the correct solution), or if I'm on the right track but am definitely hindered by a gap in knowledge.
As noted in the comments the other answer is a violation of O/C Principle (and a bit of Single Responsibility Principle (SRP)) of SOLID.
A more dynamic approach is to inject all instances of the exchange and pick the correct one. Bellow example is based on the class name (not full-qualifed name, but that cane easily be changed).
public interface IExchange
{
void Buy();
}
public class Exchange1 : IExchange
{
public void Buy() => Console.WriteLine("Buying on Exchange1");
}
public class Exchange2 : IExchange
{
public void Buy() => Console.WriteLine("Buying on Exchange2");
}
public interface IExchangeFactory
{
IExchange CreateExchange(string exchangeName);
}
// All exchanges are instantiated and injected
public class ExchangeFactory : IExchangeFactory
{
private readonly IEnumerable<IExchange> exchanges;
public ExchangeFactory(IEnumerable<IExchange> exchanges)
{
this.exchanges = exchanges ?? throw new ArgumentNullException(nameof(exchanges));
}
public IExchange CreateExchange(string exchangeName)
{
var exchange = exchanges.FirstOrDefault(e => e.GetType().Name == exchangeName);
if(exchange==null)
throw new ArgumentException($"No Exchange found for '{exchangeName}'.");
return exchange;
}
}
It can easily be extended by registering further implementation with the DI, w/o any code changes on the factory
service.AddScoped<IExchange, Exchange3>();
service.AddScoped<IExchange, Exchange4>();
In high performance scenarios (a couple of 1000 requests per second) where the injected services are scoped/transient or the memory/GC pressure on creating this extra instances is high, you can use the provider pattern to only create the exchange that's really required:
public interface IExchangeProvider
{
IExchange CreateExchange(string exchangeName);
}
public class Exchange1Provider : IExchangeProvider
{
public IExchange CreateExchange(string exchangeName)
{
if(exchangeName == nameof(Exchange1))
{
// new it, resolve it from DI, use activation whatever suits your need
return new Exchange1();
}
return null;
}
}
public class Exchange2Provider : IExchangeProvider
{
public IExchange CreateExchange(string exchangeName)
{
if (exchangeName == nameof(Exchange2))
{
// new it, resolve it from DI, use activation whatever suits your need
return new Exchange1();
}
return null;
}
}
public class LazyExchangeFactory : IExchangeFactory
{
private readonly IEnumerable<IExchangeProvider> exchangeProviders;
public LazyExchangeFactory(IEnumerable<IExchangeProvider> exchangeProviders)
{
this.exchangeProviders = exchangeProviders ?? throw new ArgumentNullException(nameof(exchangeProviders));
}
public IExchange CreateExchange(string exchangeName)
{
// This approach is lazy. The providers could be singletons etc. (avoids allocations)
// and new instance will only be created if the parameters are matching
foreach (IExchangeProvider provider in exchangeProviders)
{
IExchange exchange = provider.CreateExchange(exchangeName);
// if the provider couldn't find a matcing exchange, try next provider
if (exchange != null)
{
return exchange;
}
}
throw new ArgumentException($"No Exchange found for '{exchangeName}'.");
}
}
This approach is similar to the first, with the exception that you are extending it by adding new IExchangeProvider
s. Both approaches allow you to extend the exchanges w/o a change on ExchangeFactory
(or in high performance scenarios LazyExchangeFactory
)