I'm currently working on an C# (.NET Framework 4.7.2) application using some business logic from an unmanaged C++ library. I try to pass data (interop) back and forth from C# to C++. I may not use C++/CLI, no common language runtime allowed in my project.
It works fine for int. Unfortunately as soon as I try to send another datatype I'm getting an conversion error e.g. float 4.2f becomes 1 and string "fourtytwo" turns into -1529101360.
My C# code looks like this:
// works fine, creates an instance of TestClass
var test = TestProxy.Wrapper_Create("test");
// int, works fine, a = 42
var a = TestProxy.TryInt(test, 42);
// float, problem, b = 1
var b = TestProxy.TryFloat(test, 4.2f);
// string, problem, c = -159101360
var c = TestProxy.TryString(test, "fourtytwo");
My C# Interop Proxy class to call the native (unmanaged) C++ code looks like this:
public static class TestProxy
{
private const string coreDLL = "test.core.dll";
[DllImport(coreDLL, CallingConvention = CallingConvention.Cdecl)]
public static extern IntPtr Wrapper_Create(string name);
[DllImport(coreDLL, EntryPoint = "?TryInt@TestClass@@XXX@X", CallingConvention = CallingConvention.ThisCall)]
public static extern int TryInt(IntPtr instance, int n);
[DllImport(coreDLL, EntryPoint = "?TryFloat@TestClass@@XXX@X", CallingConvention = CallingConvention.ThisCall)]
public static extern int TryFloat(IntPtr instance, float n);
[DllImport(coreDLL, EntryPoint = "?TryString@TestClass@@XXX@X", CallingConvention = CallingConvention.ThisCall)]
public static extern int TryString(IntPtr instance, string n);
}
My native (unmanaged) C++ looks like that: the header file:
#ifdef TESTCORE_EXPORTS
#define TESTCORE_API __declspec(dllexport)
#endif
#pragma once
extern "C"
{
class TESTCORE_API TestClass
{
private:
char* name;
public:
TestClass(char*);
int TryInt(int);
float TryFloat(float);
char* TryString(char*);
};
TESTCORE_API TestClass* Wrapper_Create(char* name);
}
the implementation file:
#include "stdafx.h"
#include "TESTCore.h"
TestClass::TestClass(char* n)
{
name = n;
}
int TestClass::TryInt(int n)
{
return n; // works fine
}
float TestClass::TryFloat(float n)
{
return n; // something goes wrong here
}
char* TestClass::TryString(char* n)
{
return n; // something goes wrong here
}
extern "C"
{
TESTCORE_API TestClass * Wrapper_Create(char* name)
{
return new TestClass(name);
}
TESTCORE_API int TryInt(TestClass * instance, int n)
{
if (instance != NULL)
{
return instance->TryInt(n);
}
}
TESTCORE_API float TryFloat(TestClass * instance, float n)
{
if (instance != NULL)
{
return instance->TryFloat(n);
}
}
TESTCORE_API char* TryString(TestClass * instance, char* n)
{
if (instance != NULL)
{
return instance->TryString(n);
}
}
}
Do you know how to correctly marshal float, string from C# to C++ and back?
Thank you!
C++ doesn't have standard ABI. It's rarely a good idea to use C++ classes across DLLs, even when you have same language on both sides.
There're better ways.
Replace your __thiscall
class methods with global functions, cdecl or stdcall whichever you like (but note C# and C++ have different defaults, if you'll do nothing C++ will use cdecl, C# will import as stdcall). You can pass "this" pointer of the class in the first argument, IntPtr in C#, just like you're doing now. Also if you'll write extern "C"
or use a module definition file, they will have human-readable names.
If you want objects, use COM. Declare an interface that inherits from IUnknown, implement it in C++ (I usually use ATL), and export a global function to create an instance of that object (2 lines in ATL, CComObject<T>::CreateInstance
followed by AddRef
). No need to register, type libraries, you just need to implement IUnknown (but see this if you want to use them from multiple threads)
Update: strings are indeed harder. Apply [MarshalAs(UnmanagedType.LPTStr)]
to the argument. Apply [return: MarshalAs(UnmanagedType.LPTStr)]
to the function. Specify PreserveSig=true
in your DllImport. Finally, modify the C++ code to return a copy of the string, i.e. call strlen
then CoTaskMemAlloc
(don't forget about the '\0'
) then strcpy
.
Easier way to deal with strings is like this:
HRESULT TryString( TestClass *instance, BSTR i, BSTR *o )
At least there're CComBSTR
and _bstr_t
built-in classes to deal with memory management.