I have a matrix with inf values and a boolean array that indicates which values to keep. How do I use the boolean array to zero out all values in the original matrix including the infs but keep all infs corresponding to Trues?
ex
X = [inf, 1, inf]
[inf, 2, 4]
[3, 4, 5]
M = [1, 0, 0]
[0, 1, 0]
[0, 1, 0]
(current output)
M * X = [inf, 0, nan]
[nan, 2, 0]
[0, 4, 0]
(desired output)
M * X = [inf, 0, 0]
[0, 2, 0]
[0, 4, 0]
Inputs:
In [77]: X
Out[77]:
array([[inf, 1., inf],
[inf, 2., 4.],
[ 3., 4., 5.]])
In [78]: M
Out[78]:
array([[1, 0, 0],
[0, 1, 0],
[0, 1, 0]])
Approach
First, we need to invert the mask M
and then get the indices using numpy.where
; With these indices we can then set the elements in the original array to zero, by indexing into them as follows:
# inverting the mask
In [59]: M_not = np.logical_not(M)
In [80]: M_not
Out[80]:
array([[False, True, True],
[ True, False, True],
[ True, False, True]])
# get the indices where `True` exists in array `M_not`
In [81]: indices = np.where(M_not)
In [82]: indices
Out[82]: (array([0, 0, 1, 1, 2, 2]), array([1, 2, 0, 2, 0, 2]))
# zero out the elements
In [84]: X[indices] = 0
In [61]: X
Out[61]:
array([[inf, 0., 0.],
[0., 2., 0.],
[0., 4., 0.]])
P.S. inverting the mask should not be understood as matrix inversion. It should be understood as flipping the boolean values (True
--> False
; False
--> True
)