Search code examples
pythonpandasdataframefuzzy-comparison

Merge dataframes on multiple columns with fuzzy match in Python


I have two example dataframes as follows:

df1 = pd.DataFrame({'Name': {0: 'John', 1: 'Bob', 2: 'Shiela'}, 
                   'Degree': {0: 'Masters', 1: 'Graduate', 2: 'Graduate'}, 
                   'Age': {0: 27, 1: 23, 2: 21}}) 

df2 = pd.DataFrame({'Name': {0: 'John S.', 1: 'Bob K.', 2: 'Frank'}, 
                   'Degree': {0: 'Master', 1: 'Graduated', 2: 'Graduated'}, 
                   'GPA': {0: 3, 1: 3.5, 2: 4}}) 

I want to merge them together based on two columns Name and Degree with fuzzy matching method to drive out possible duplicates. This is what I have realized with the help from reference here: Apply fuzzy matching across a dataframe column and save results in a new column

from fuzzywuzzy import fuzz
from fuzzywuzzy import process

compare = pd.MultiIndex.from_product([df1['Name'],
                                      df2['Name']]).to_series()

def metrics(tup):
    return pd.Series([fuzz.ratio(*tup),
                      fuzz.token_sort_ratio(*tup)],
                     ['ratio', 'token'])
compare.apply(metrics)

compare.apply(metrics).unstack().idxmax().unstack(0)

compare.apply(metrics).unstack(0).idxmax().unstack(0)

Let's say fuzz.ratio of one's Name and Degree both are higher than 80 we consider they are same person. And taken Name and Degree from df1 as default. How can I get a following expected result? Thanks.

df = df1.merge(df2, on = ['Name', 'Degree'], how = 'outer')

      Name     Degree   Age  GPA    duplicatedName   duplicatedDegree 
0     John    Masters  27.0  3.0         John S.          Master
1      Bob   Graduate  23.0  3.5          Bob K.         Graduated
2   Shiela   Graduate  21.0  NaN          NaN            Graduated
3    Frank  Graduated   NaN  4.0          NaN            Graduate

Solution

  • I think ratio should be lower, for me working 60. Create Series with list comprehension, filter by N and get maximal value. Last map with fillna and last merge:

    from fuzzywuzzy import fuzz
    from fuzzywuzzy import process
    from  itertools import product
    
    N = 60
    names = {tup: fuzz.ratio(*tup) for tup in 
               product(df1['Name'].tolist(), df2['Name'].tolist())}
    
    s1 = pd.Series(names)
    s1 = s1[s1 > N]
    s1 = s1[s1.groupby(level=0).idxmax()]
    
    print (s1)
    John S.    John
    Bob K.      Bob
    dtype: object
    
    degrees = {tup: fuzz.ratio(*tup) for tup in 
               product(df1['Degree'].tolist(), df2['Degree'].tolist())}
    
    s2 = pd.Series(degrees)
    s2 = s2[s2 > N]
    s2 = s2[s2.groupby(level=0).idxmax()]
    print (s2)
    Graduated    Graduate
    Master        Masters
    dtype: object
    
    df2['Name'] = df2['Name'].map(s1).fillna(df2['Name'])
    df2['Degree'] = df2['Degree'].map(s2).fillna(df2['Degree'])
    #generally slowier alternative
    #df2['Name'] = df2['Name'].replace(s1)
    #df2['Degree'] = df2['Degree'].replace(s2)
    

    df = df1.merge(df2, on = ['Name', 'Degree'], how = 'outer')
    print (df)
         Name    Degree   Age  GPA
    0    John   Masters  27.0  3.0
    1     Bob  Graduate  23.0  3.5
    2  Shiela  Graduate  21.0  NaN
    3   Frank  Graduate   NaN  4.0