I have a dataset with all the order, customer and orderitem information. I wandt to expand my orderitems in new columns, but without losing the information about the customer
CustomerId OrderId Item
1 1 CD
1 1 DVD
2 2 CD
And the result should be somehow:
CustomerId OrderId CD DVD
1 1 1 1
2 2 1 0
I tried
df2 = pd.concat([df, pd.get_dummies(df.Item)], axis='columns')
df2 = df2.groupby('CustomerId')
Simpler is crosstab
;
pd.crosstab([df.CustomerId, df.OrderId], df.Item).reset_index()
CustomerId OrderId CD DVD
0 1 1 1 1
1 2 2 1 0
Or, pivot_table
if performance is important.
df.pivot_table(index=['CustomerId', 'OrderId'],
columns=['Item'],
aggfunc='size',
fill_value=0)
Item CD DVD
CustomerId OrderId
1 1 1 1
2 2 1 0
If you want to use dummies, str.get_dummies
is another option:
# Solution similar to @jezrael but with str.get_dummies
(df.set_index(['CustomerId', 'OrderId'])
.Item.str.get_dummies()
.sum(level=[0, 1])
.reset_index())
CustomerId OrderId CD DVD
0 1 1 1 1
1 2 2 1 0
If you need the indicator,
(df.set_index(['CustomerId', 'OrderId'])
.Item.str.get_dummies()
.max(level=[0, 1])
.reset_index())