Search code examples
pythonpandasdataframegroup-by

Get only the first and last rows of each group with pandas


I have huge a dataframe with millions of rows and id. My data looks like this:

Time    ID  X   Y
8:00    A   23  100
9:00    B   24  110
10:00   B   25  120
11:00   C   26  130
12:00   C   27  140
13:00   A   28  150
14:00   A   29  160
15:00   D   30  170
16:00   C   31  180
17:00   B   32  190
18:00   A   33  200
19:00   C   34  210
20:00   A   35  220
21:00   B   36  230
22:00   C   37  240
23:00   B   38  250

When I sort the data on id and time, the result looks like this:

Time    ID  X   Y
8:00    A   23  100
13:00   A   28  150
14:00   A   29  160
18:00   A   33  200
20:00   A   35  220
9:00    B   24  110
10:00   B   25  120
17:00   B   32  190
21:00   B   36  230
23:00   B   38  250
11:00   C   26  130
12:00   C   27  140
16:00   C   31  180
19:00   C   34  210
22:00   C   37  240
15:00   D   30  170

From here, I want to pick only "The first and the last" of the id and eliminate the rest. The expected result looks like this:

Time    ID  X   Y
8:00    A   23  100
20:00   A   35  220
9:00    B   24  110
23:00   B   38  250
11:00   C   26  130
22:00   C   37  240
15:00   D   30  170

How to do it in pandas?


Solution

  • Use groupby, find the head and tail for each group, and concat the two.

    g = df.groupby('ID')
    
    (pd.concat([g.head(1), g.tail(1)])
       .drop_duplicates()
       .sort_values('ID')
       .reset_index(drop=True))
    
        Time ID   X    Y
    0   8:00  A  23  100
    1  20:00  A  35  220
    2   9:00  B  24  110
    3  23:00  B  38  250
    4  11:00  C  26  130
    5  22:00  C  37  240
    6  15:00  D  30  170
    

    If you can guarantee each ID group has at least two rows, the drop_duplicates call is not needed.


    Details

    g.head(1)
    
        Time ID   X    Y
    0   8:00  A  23  100
    1   9:00  B  24  110
    3  11:00  C  26  130
    7  15:00  D  30  170
    
    g.tail(1)
    
         Time ID   X    Y
    7   15:00  D  30  170
    12  20:00  A  35  220
    14  22:00  C  37  240
    15  23:00  B  38  250
    
    pd.concat([g.head(1), g.tail(1)])
    
         Time ID   X    Y
    0    8:00  A  23  100
    1    9:00  B  24  110
    3   11:00  C  26  130
    7   15:00  D  30  170
    7   15:00  D  30  170
    12  20:00  A  35  220
    14  22:00  C  37  240
    15  23:00  B  38  250