I'm trying to use multiclass SVM code from Mblondel Multiclass SVM, I read his paper and he used dataset from sklearn 20newsgroup, but when I tried to use that, the code isn't working properly.
I tried to change the code to match 20newsgroup dataset. but I'm stuck at this error..
Traceback (most recent call last):
File "F:\env\chatbotstripped\CSSVM.py", line 157, in
clf.fit(X, y)
File "F:\env\chatbotstripped\CSSVM.py", line 106, in fit
v = self._violation(g, y, i)
File "F:\env\chatbotstripped\CSSVM.py", line 50, in _violation
elif k != y[i] and self.dual_coef_[k, i] >= 0:
IndexError: index 20 is out of bounds for axis 0 with size 20
this is the main code:
from sklearn.datasets import fetch_20newsgroups
news_train = fetch_20newsgroups(subset='train')
X, y = news_train.data[:100], news_train.target[:100]
clf = MulticlassSVM(C=0.1, tol=0.01, max_iter=100, random_state=0, verbose=1)
X = TfidfVectorizer().fit_transform(X)
clf.fit(X, y)
print(clf.score(X, y))
this is the fit code:
def fit(self, X, y):
n_samples, n_features = X.shape
self._label_encoder = LabelEncoder()
y = self._label_encoder.fit_transform(y)
n_classes = len(self._label_encoder.classes_)
self.dual_coef_ = np.zeros((n_classes, n_samples), dtype=np.float64)
self.coef_ = np.zeros((n_classes, n_features))
norms = np.sqrt(np.sum(X.power(2), axis=1)) # i changed this code
rs = check_random_state(self.random_state)
ind = np.arange(n_samples)
rs.shuffle(ind)
# i added this sparse
sparse = sp.isspmatrix(X)
if sparse:
X = np.asarray(X.data, dtype=np.float64, order='C')
for it in range(self.max_iter):
violation_sum = 0
for ii in range(n_samples):
i = ind[ii]
if norms[i] == 0:
continue
g = self._partial_gradient(X, y, i)
v = self._violation(g, y, i)
violation_sum += v
if v < 1e-12:
continue
delta = self._solve_subproblem(g, y, norms, i)
self.coef_ += (delta * X[i][:, np.newaxis]).T
self.dual_coef_[:, i] += delta
if it == 0:
violation_init = violation_sum
vratio = violation_sum / violation_init
if self.verbose >= 1:
print("iter", it + 1, "violation", vratio)
if vratio < self.tol:
if self.verbose >= 1:
print("Converged")
break
return self
and _violation code:
def _violation(self, g, y, i):
smallest = np.inf
for k in range(g.shape[0]):
if k == y[i] and self.dual_coef_[k, i] >= self.C:
continue
elif k != y[i] and self.dual_coef_[k, i] >= 0:
continue
smallest = min(smallest, g[k].all()) # and i added .all()
return g.max() - smallest
I know there's something wrong with the index, I'm not sure how to fix that, and I don't want to ruin the code because I don't really understand how's this code works.
You have to convert the sparse matrix output of tfidf vectorizer into dense matrix then make it as a 2D array. Try this!
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
news_train = fetch_20newsgroups(subset='train')
text, y = news_train.data[:1000], news_train.target[:1000]
clf = MulticlassSVM(C=0.1, tol=0.01, max_iter=100, random_state=0, verbose=1)
vectorizer= TfidfVectorizer(min_df=20,stop_words='english')
X = np.asarray(vectorizer.fit_transform(text).todense())
clf.fit(X, y)
print(clf.score(X, y))
Output:
iter 1 violation 1.0
iter 2 violation 0.07075102408683964
iter 3 violation 0.018288133735158228
iter 4 violation 0.009149083942255389
Converged
0.953