I have a python list where elements can repeat.
>>> a = [1,2,2,3,3,4,5,6]
I want to get the first n
unique elements from the list.
So, in this case, if i want the first 5 unique elements, they would be:
[1,2,3,4,5]
I have come up with a solution using generators:
def iterate(itr, upper=5):
count = 0
for index, element in enumerate(itr):
if index==0:
count += 1
yield element
elif element not in itr[:index] and count<upper:
count += 1
yield element
In use:
>>> i = iterate(a, 5)
>>> [e for e in i]
[1,2,3,4,5]
I have doubts on this being the most optimal solution. Is there an alternative strategy that i can implement to write it in a more pythonic and efficient way?
I would use a set
to remember what was seen and return from the generator when you have seen
enough:
a = [1, 2, 2, 3, 3, 4, 5, 6]
def get_unique_N(iterable, N):
"""Yields (in order) the first N unique elements of iterable.
Might yield less if data too short."""
seen = set()
for e in iterable:
if e in seen:
continue
seen.add(e)
yield e
if len(seen) == N:
return
k = get_unique_N([1, 2, 2, 3, 3, 4, 5, 6], 4)
print(list(k))
Output:
[1, 2, 3, 4]
According to PEP-479 you should return
from generators, not raise StopIteration
- thanks to @khelwood & @iBug for that piece of comment - one never learns out.
With 3.6 you get a deprecated warning, with 3.7 it gives RuntimeErrors: Transition Plan if still using raise StopIteration
Your solution using elif element not in itr[:index] and count<upper:
uses O(k)
lookups - with k
being the length of the slice - using a set reduces this to O(1)
lookups but uses more memory because the set has to be kept as well. It is a speed vs. memory tradeoff - what is better is application/data dependend.
Consider [1, 2, 3, 4, 4, 4, 4, 5]
vs [1] * 1000 + [2] * 1000 + [3] * 1000 + [4] * 1000 + [5] * 1000 + [6]
:
For 6 uniques (in longer list):
O(1)+O(2)+...+O(5001)
5001*O(1)
lookup + memory for set( {1, 2, 3, 4, 5, 6})