I am writing a device driver to handle interrupts for a PCIe card, which currently works for any interrupt vector raised on the IRQ line.
But it has a few types that can be raised, flagged by the Vector register. So now I need to read the vector information and be a bit cleverer...
So, do I :-
1/ Have separate dev nodes /dev/int1
, /dev/int2
, etc for each interrupt type, and just doc that int1
is for vector type A etc?
1.1/ As each file/char-devices will have its own minor
number, when opened I'll know which is which. i think.
1.2/ ldd3 seems to demo this method.
2/ Have one node /dev/int
(as I do now) and have multiple processes hanging off the same read
method? sounds better?!
2.1/ Then only wake the correct process up...?
2.2/ Do I use separate wait_queue_head_t wait_queue
s? Or different flag
/test conditions?
In the read
method:-
wait_event_interruptible(wait_queue, flag);
In the handler not real code! :-
int vector = read_vector();
if vector = A then
wake_up_interruptible(wait_queue, flag)
return IRQ_HANDLED;
else
return IRQ_NONE/IRQ_RETVAL?
EDIT: notes from peoples comments :-
1) my user-space code mmap
's all of the PCIe firmware registers
2) User-space code has a few threads, each perform a blocking read
on the device driver device nodes, which then returns data from the firmware when an interrupt occurs. I need the correct thread woken up depending on the interrupt type.
I am not sure I understand correctly what you mean with the Vector register (a pointer to some documentation would help me precise for your case).
Anyway, any PCI device gets a unique interrupt number (given by the BIOS or some firmware on other architectures than x86). You just need to register this interrupt in your driver.
priv->name = DRV_NAME;
err = request_irq(pdev->irq, your_irqhandler, IRQF_SHARED, priv->name,
pdev);
if (err) {
dev_err(&pdev->dev, "cannot request IRQ\n");
goto err_out_unmap;
}
One other thing that I do not really understand is why you would export your interrupts as a dev node: interrupts are certainly something that need to remain in your driver/kernel code. But I guess here you want to export a device that is then accessed in userspace. I just find /dev/int no to be a good naming.
For your question about multiple dev nodes: if your different interrupt sources then provide access to different hardware resources (even if on the same PCI board) I would go for option 1), with a wait_queue for each device. Otherwise, I would go for option 2)
Since your interrupts are coming from the same physical device, if you chose option 1) or option 2), the interrupt line will have to be shared and you will have to read the vector in your interrupt handler to define which hardware resource raised the interrupt.
For option 1), it would be something like this:
static irqreturn_t pex_irqhandler(int irq, void *dev) {
struct pci_dev *pdev = dev;
int result;
result = pci_read_config_byte(pdev, PCI_INTERRUPT_LINE, &myirq);
if (result) {
int vector = read_vector();
if (vector == A) {
set_flagA(flag);
} else if (vector == B) {
set_flagB(flag);
}
wake_up_interruptible(wait_queue, flag);
return IRQ_HANDLED;
} else {
return IRQ_NONE;
}
For option 2, it would be similar, but you would have only one if clause (for the respective vector value) in every different interrupt handler that you would request for every node.