I am trying to find the right number of cluster for k-means and using the cdist function for this.
I can understand the argument for cdist should be of same dimension. I tried printing the size of both argument which is (2542, 39) and (1, 39).
Can someone please suggest where i am going wrong ?
print(tfidf_matrix.shape) ### Returning --> (2542, 39)
#Finding optimal no. of clusters
from scipy.spatial.distance import cdist
clusters=range(1,10)
meanDistortions=[]
for k in clusters:
model=KMeans(n_clusters=k)
model.fit(tfidf_matrix)
prediction=model.predict(tfidf_matrix)
print(model.cluster_centers_.shape) ## Returning (1, 39)
meanDistortions.append(sum(np.min(cdist(tfidf_matrix, model.cluster_centers_, 'euclidean'), axis=1)) /
tfidf_matrix.shape[0])
Error:
ValueError Traceback (most recent call last)
<ipython-input-181-c15e32d863d2> in <module>()
12 prediction=model.predict(tfidf_matrix)
13 print(model.cluster_centers_.shape)
---> 14 meanDistortions.append(sum(np.min(cdist(tfidf_matrix, model.cluster_centers_, 'euclidean'), axis=1)) /
15 tfidf_matrix.shape[0])
16
~\Downloads\Conda\envs\data-science\lib\site-packages\scipy\spatial\distance.py in cdist(XA, XB, metric, *args, **kwargs)
2588
2589 if len(s) != 2:
-> 2590 raise ValueError('XA must be a 2-dimensional array.')
2591 if len(sB) != 2:
2592 raise ValueError('XB must be a 2-dimensional array.')
ValueError: XA must be a 2-dimensional array.
It probably is a type issue.
Tfidf probably is not a dense matrix as required by cdist. Of course it makes sense to use a sparse matrix here.
However, cdist does not seem to accept sparse matrixes: scipy cdist with sparse matrices