I am trying to do a double integrale, using integrate.dblquad The idea is to pass a function where one of the variables (q) is array: With the numerical integration (for loops over x and y it works, but it is very slow). Scipy gives the following error: TypeError: only size-1 arrays can be converted to Python scalars
#set of values for the variables:
q=np.linspace(0.0001, 0.6, num=200)
rho1=0.2
rho2=0.5
rho_s=0.340
a = 20.1
b = 11.12
c = 6.18
ta=6.0
tb=5.5
tc=2.2
import numpy as np
from scipy import integrate
#equation simplifier:
def Bessel_like(z):
Bes = 3 * (np.sin(z) - z * np.cos(z)) / (z**3.)
return Bes
def Intensity(rho1, rho2, rho_s, a, b, c, ta, tb, tc, q):
V1 = a * b* c
V1pV2 = (a+ta) * (b+tb) * tc
factorV1 = V1 * (rho1-rho2)
factorV1pV2 = V1pV2 * (rho2-rho_s)
def f(x,y):
t1_1 = np.square(a * np.cos(np.pi * x/3))
t1_2 = np.square(b * np.sin(np.pi * x/3)) * (1 - np.square(y))
t1_3 = np.square(c*y)
t1 = q * np.sqrt(t1_1 + t1_2 + t1_3)
t2_1 = np.square( (a+ta) * np.cos(np.pi * x/3) )
t2_2 = np.square( (b+tb) * np.sin(np.pi * x/3) ) * (1 - np.square(y))
t2_3 = np.square( (c+tc)*y )
t2 = q * np.sqrt(t2_1 + t2_2 + t2_3)
return np.square(factorV1 * Bessel_like(t1) + factorV1pV2 * Bessel_like(t2) )
Int = integrate.dblquad(f, 0, 1, lambda x: 0, lambda x: 1)
return Int[0]
# latter on, calling integral
Icalc = Intensity(rho1, rho2, rho_s, a, b, c, ta, tb, tc, q)
What would be the easiest/most efficient way to do this,
and assign the array of Int
values to one variable (for each q
, but single array, I don't need a q
value stored). I want this because this is a part of a really big code, and so far Int
was array of values for the integral.
Sorry for the stupid question and thank you in advance :)
There is no straightforward solution that I know of to speed up a vectorized version of double integral. What I can recommend is to loosen the tolerance of dblquad
, by increasing epsabs
to, say, 1e-6
or 1e-5
An additional useful option is to reduce the number of sample points in q and interpolate them using a Spline:
from scipy.interpolate import InterpolatedUnivariateSpline as IUS
def Intensity(q, rho1, rho2, rho_s, a, b, c, ta, tb, tc):
# I reversed your variable order putting q first, so you can vectorize on q
V1 = a * b* c
V1pV2 = (a+ta) * (b+tb) * tc
factorV1 = V1 * (rho1-rho2)
factorV1pV2 = V1pV2 * (rho2-rho_s)
def f(x,y):
t1_1 = np.square(a * np.cos(np.pi * x/3))
t1_2 = np.square(b * np.sin(np.pi * x/3)) * (1 - np.square(y))
t1_3 = np.square(c*y)
t1 = q * np.sqrt(t1_1 + t1_2 + t1_3)
t2_1 = np.square( (a+ta) * np.cos(np.pi * x/3) )
t2_2 = np.square( (b+tb) * np.sin(np.pi * x/3) ) * (1 - np.square(y))
t2_3 = np.square( (c+tc)*y )
t2 = q * np.sqrt(t2_1 + t2_2 + t2_3)
return np.square(factorV1 * Bessel_like(t1) + factorV1pV2 * Bessel_like(t2) )
Int = integrate.dblquad(f, 0, 1, lambda x: 0, lambda x: 1)
return Int[0]
# latter on, calling integral
args = [rho1, rho2, rho_s, a, b, c, ta, tb, tc]
Icalc = Intensity(q[0], *args)
print(Icalc)
# construct spline
ius = IUS(q[::10], np.vectorize(Intensity)(q[::10])
plt.plot(q, np.vectorize(Intensity)(q), 'go')
plt.plot(q, ius(q))