I have a set of values that I'd like to plot the gaussian kernel density estimation of, however there are two problems that I'm having:
Here's the plot I've generated so far: The order of the y axis is actually relevant since it is representative of the phylogeny of each bacterial species.
I'd like to add a gaussian kde overlay for each color, but so far I haven't been able to leverage seaborn or scipy to do this.
Here's the code for the above grouped bar plot using python and matplotlib:
enterN = len(color1_plotting_values)
fig, ax = plt.subplots(figsize=(20,30))
ind = np.arange(N) # the x locations for the groups
width = .5 # the width of the bars
p1 = ax.barh(Species_Ordering.Species.values, color1_plotting_values, width, label='Color1', log=True)
p2 = ax.barh(Species_Ordering.Species.values, color2_plotting_values, width, label='Color2', log=True)
for b in p2:
b.xy = (b.xy[0], b.xy[1]+width)
Thanks!
The protocol for kernel density estimation requires the underlying data. You could come up with a new method that uses the empirical pdf (ie the histogram) instead, but then it wouldn't be a KDE distribution.
Not all hope is lost, though. You can get a good approximation of a KDE distribution by first taking samples from the histogram, and then using KDE on those samples. Here's a complete working example:
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as sts
n = 100000
# generate some random multimodal histogram data
samples = np.concatenate([np.random.normal(np.random.randint(-8, 8), size=n)*np.random.uniform(.4, 2) for i in range(4)])
h,e = np.histogram(samples, bins=100, density=True)
x = np.linspace(e.min(), e.max())
# plot the histogram
plt.figure(figsize=(8,6))
plt.bar(e[:-1], h, width=np.diff(e), ec='k', align='edge', label='histogram')
# plot the real KDE
kde = sts.gaussian_kde(samples)
plt.plot(x, kde.pdf(x), c='C1', lw=8, label='KDE')
# resample the histogram and find the KDE.
resamples = np.random.choice((e[:-1] + e[1:])/2, size=n*5, p=h/h.sum())
rkde = sts.gaussian_kde(resamples)
# plot the KDE
plt.plot(x, rkde.pdf(x), '--', c='C3', lw=4, label='resampled KDE')
plt.title('n = %d' % n)
plt.legend()
plt.show()
Output:
The red dashed line and the orange line nearly completely overlap in the plot, showing that the real KDE and the KDE calculated by resampling the histogram are in excellent agreement.
If your histograms are really noisy (like what you get if you set n = 10
in the above code), you should be a bit cautious when using the resampled KDE for anything other than plotting purposes:
Overall the agreement between the real and resampled KDEs is still good, but the deviations are noticeable.
Since you haven't posted your actual data I can't give you detailed advice. I think your best bet will be to just number your categories in order, then use that number as the "x" value of each bar in the histogram.