I´m currently trying to find the minimum of some function f(arg1, arg2, arg3, ...)
via Gaussian optimization using the GPyOpt module. While f(...)
takes many input arguments, I only want to optimize a single one of them. How do you do that?
My current "solution" is to put f(...)
in a dummy class and specify the not-to-be-optimized arguments while initializing it. While this is arguably the most pythonesque way of solving this problem, it`s also way more complicated than it has any right to be.
Short working example for a function f(x, y, method)
with fixed y
(a numeric) and method
(a string) while optimizing x
:
import GPyOpt
import numpy as np
# dummy class
class TarFun(object):
# fix y while initializing the object
def __init__(self, y, method):
self.y = y
self.method = method
# actual function to be minimized
def f(self, x):
if self.method == 'sin':
return np.sin(x-self.y)
elif self.method == 'cos':
return np.cos(x-self.y)
# create TarFun object with y fixed to 2 and use 'sin' method
tarFunObj = TarFun(y=2, method='sin')
# describe properties of x
space = [{'name':'x', 'type': 'continuous', 'domain': (-5,5)}]
# create GPyOpt object that will only optimize x
optObj = GPyOpt.methods.BayesianOptimization(tarFunObj.f, space)
There definitely has to be a simpler way. But all the examples I found optimize all arguments and I couldn't figure it out reading the code on github (I though i would find the information in GPyOpt.core.task.space , but had no luck).
GPyOpt supports this natively with context. You describe the whole domain of your function, and then fix values of some of the variables with a context dictionary when calling optimization routine. API looks like that:
myBopt.run_optimization(..., context={'var1': .3, 'var2': 0.4})
More details can be found in this tutorial notebook about contextual optimization.