Search code examples
matplotlibmultiple-axes

Matplotlib: different scale on negative side of the axis


Background


I am trying to show three variables on a single plot. I have connected the three points using lines of different colours based on some other variables. This is shown here figure here


Problem


What I want to do is to have a different scale on the negative x-axis. This would help me in providing positive x_ticks, different axis label and also clear and uncluttered representation of the lines on left side of the image


Question


  • How to have a different positive x-axis starting from 0 towards negative direction?
  • Have xticks based on data plotted in that direction
  • Have a separate xlabel for this new axis

Additional information


I have checked other questions regarding inclusion of multiple axes e.g. this and this. However, these questions did not serve the purpose.

Code Used

font_size = 20
plt.rcParams.update({'font.size': font_size})

fig = plt.figure()
ax = fig.add_subplot(111)
#read my_data from file or create it

for case in my_data:

    #Iterating over my_data

    if condition1 == True:
        local_linestyle = '-'
        local_color = 'r'
        local_line_alpha = 0.6
    elif condition2 == 1:
        local_linestyle = '-'
        local_color = 'b'
        local_line_alpha = 0.6
    else:
        local_linestyle = '--'
        local_color = 'g'
        local_line_alpha = 0.6

    datapoint = [case[0], case[1], case[2]]

    plt.plot(datapoint[0], 0, color=local_color)
    plt.plot(-datapoint[2], 0, color=local_color)
    plt.plot(0, datapoint[1], color=local_color)
    plt.plot([datapoint[0], 0], [0, datapoint[1]], linestyle=local_linestyle, color=local_color)
    plt.plot([-datapoint[2], 0], [0, datapoint[1]], linestyle=local_linestyle, color=local_color)
plt.show()
exit()

Solution

  • You can define a custom scale, where values below zero are scaled differently than those above zero.

    import numpy as np
    from matplotlib import scale as mscale
    from matplotlib import transforms as mtransforms
    from matplotlib.ticker import FuncFormatter
    
    class AsymScale(mscale.ScaleBase):
        name = 'asym'
    
        def __init__(self, axis, **kwargs):
            mscale.ScaleBase.__init__(self)
            self.a = kwargs.get("a", 1)
    
        def get_transform(self):
            return self.AsymTrans(self.a)
    
        def set_default_locators_and_formatters(self, axis):
            # possibly, set a different locator and formatter here.
            fmt = lambda x,pos: "{}".format(np.abs(x))
            axis.set_major_formatter(FuncFormatter(fmt))
    
        class AsymTrans(mtransforms.Transform):
            input_dims = 1
            output_dims = 1
            is_separable = True
    
            def __init__(self, a):
                mtransforms.Transform.__init__(self)
                self.a = a
    
            def transform_non_affine(self, x):
                return (x >= 0)*x + (x < 0)*x*self.a
    
            def inverted(self):
                return AsymScale.InvertedAsymTrans(self.a)
    
        class InvertedAsymTrans(AsymTrans):
    
            def transform_non_affine(self, x):
                return (x >= 0)*x + (x < 0)*x/self.a
            def inverted(self):
                return AsymScale.AsymTrans(self.a)
    

    Using this you would provide a scale parameter a that scales the negative part of the axes.

    # Now that the Scale class has been defined, it must be registered so
    # that ``matplotlib`` can find it.
    mscale.register_scale(AsymScale)
    
    import matplotlib.pyplot as plt
    fig, ax = plt.subplots()
    
    ax.plot([-2, 0, 5], [0,1,0])
    ax.set_xscale("asym", a=2)
    
    ax.annotate("negative axis", xy=(.25,0), xytext=(0,-30), 
                xycoords = "axes fraction", textcoords="offset points", ha="center")
    ax.annotate("positive axis", xy=(.75,0), xytext=(0,-30), 
                xycoords = "axes fraction", textcoords="offset points", ha="center")
    plt.show()
    

    enter image description here

    The question is not very clear about what xticks and labels are desired, so I left that out for now.