I'm working on learning C++ with Stroustrup's (Programming Principles & Practice Using C++) book. In an exercise we define a simple struct:
template<typename T>
struct S {
explicit S(T v):val{v} { };
T& get();
const T& get() const;
void set(T v);
void read_val(T& v);
T& operator=(const T& t); // deep copy assignment
private:
T val;
};
We're then asked to define a const and a non-const member function to get val
.
I was wondering: Is there any case where it makes sense to have non-const get
function that returns val
?
It seems much cleaner to me that we can't change the value in such situations indirectly. What might be use cases where you need a const and a non-const get
function to return a member variable?
Non-const getters?
Getters and setters are merely convention. Instead of providing a getter and a setter, a sometimes used idiom is to provide something along the line of
struct foo {
int val() const { return val_; }
int& val() { return val_; }
private:
int val_;
};
Such that, depending on the constness of the instance you get a reference or a copy:
void bar(const foo& a, foo& b) {
auto x = a.val(); // calls the const method returning an int
b.val() = x; // calls the non-const method returning an int&
};
Whether this is good style in general is a matter of opinion. There are cases where it causes confusion and other cases where this behaviour is just what you would expect (see below).
In any case, it is more important to design the interface of a class according to what the class is supposed to do and how you want to use it rather than blindly following conventions about setters and getters (eg you should give the method a meaningful name that expresses what it does, not just in terms of "pretend to be encapsulated and now provide me access to all your internals via getters", which is what using getters everywhere actually means).
Concrete example
Consider that element access in containers is usually implemented like this. As a toy example:
struct my_array {
int operator[](unsigned i) const { return data[i]; }
int& operator[](unsigned i) { return data[i]; }
private:
int data[10];
};
It is not the containers job to hide the elements from the user (even data
could be public). You dont want different methods to access elements depending on whether you want to read or write the element, hence providing a const
and a non-const overload makes perfectly sense in this case.
non-const reference from get vs encapsulation
Maybe not that obvious, but it is a bit controversial whether providing getters and setters supports encapsulation or the opposite. While in general this matter is to a large extend opinion based, for getters that return non const references it is not so much about opinions. They do break encapuslation. Consider
struct broken {
void set(int x) {
counter++;
val = x;
}
int& get() { return x; }
int get() const { return x; }
private:
int counter = 0;
int value = 0;
};
This class is broken as the name suggests. Clients can simply grab a reference and the class has no chance to count the number of times the value is modified (as the set
suggests). Once you return a non-const reference then regarding encapsulation there is little difference to making the member public. Hence, this is used only for cases where such behaviour is natural (eg container).
PS
Note that your example returns a const T&
rather than a value. This is reasonable for template code, where you dont know how expensive a copy is, while for an int
you wont gain much by returning a const int&
instead of an int
. For the sake of clarity I used non-template examples, though for templated code you would probably rather return a const T&
.