I want to calculate the information gain
on 20_newsgroup
data set.
I am using the code here(also I put a copy of the code down of the question).
As you see the input to the algorithm is X,y
My confusion is that, X
is going to be a matrix
with documents
in rows and features as column
. (according to 20_newsgroup it is 11314,1000
in case i only considered 1000 features).
but according to the concept of information gain, it should calculate information gain for each feature.
(So I was expecting to see the code in a way loop through each feature, so the input to the function be a matrix where rows are features and columns are class)
But X is not feature here but X stands for documents, and I can not see the part in the code that take care of this part! ( I mean considering each document, and then going through each feature of that document; like looping through rows but at the same time looping through columns as the features are stored in columns).
I have read this and this and many similar questions but they are not clear in terms of input matrix shape.
this is the code for reading 20_newsgroup:
newsgroup_train = fetch_20newsgroups(subset='train')
X,y = newsgroup_train.data,newsgroup_train.target
cv = CountVectorizer(max_df=0.99,min_df=0.001, max_features=1000,stop_words='english',lowercase=True,analyzer='word')
X_vec = cv.fit_transform(X)
(X_vec.shape)
is (11314,1000) which is not features in the 20_newsgroup data set. I am thinking am I calculating Information gain in a incorrect way?
This is the code for Information gain
:
def information_gain(X, y):
def _calIg():
entropy_x_set = 0
entropy_x_not_set = 0
for c in classCnt:
probs = classCnt[c] / float(featureTot)
entropy_x_set = entropy_x_set - probs * np.log(probs)
probs = (classTotCnt[c] - classCnt[c]) / float(tot - featureTot)
entropy_x_not_set = entropy_x_not_set - probs * np.log(probs)
for c in classTotCnt:
if c not in classCnt:
probs = classTotCnt[c] / float(tot - featureTot)
entropy_x_not_set = entropy_x_not_set - probs * np.log(probs)
return entropy_before - ((featureTot / float(tot)) * entropy_x_set
+ ((tot - featureTot) / float(tot)) * entropy_x_not_set)
tot = X.shape[0]
classTotCnt = {}
entropy_before = 0
for i in y:
if i not in classTotCnt:
classTotCnt[i] = 1
else:
classTotCnt[i] = classTotCnt[i] + 1
for c in classTotCnt:
probs = classTotCnt[c] / float(tot)
entropy_before = entropy_before - probs * np.log(probs)
nz = X.T.nonzero()
pre = 0
classCnt = {}
featureTot = 0
information_gain = []
for i in range(0, len(nz[0])):
if (i != 0 and nz[0][i] != pre):
for notappear in range(pre+1, nz[0][i]):
information_gain.append(0)
ig = _calIg()
information_gain.append(ig)
pre = nz[0][i]
classCnt = {}
featureTot = 0
featureTot = featureTot + 1
yclass = y[nz[1][i]]
if yclass not in classCnt:
classCnt[yclass] = 1
else:
classCnt[yclass] = classCnt[yclass] + 1
ig = _calIg()
information_gain.append(ig)
return np.asarray(information_gain)
Well, after going through the code in detail, I learned more about X.T.nonzero()
.
Actually it is correct that information gain needs to loop through features.
Also it is correct that the matrix scikit-learn
give us here is based on doc-features
.
But:
in code it uses X.T.nonzero()
which technically transform all the nonzero values into array. and then in the next row loop through the length of that array range(0, len(X.T.nonzero()[0])
.
Overall, this part X.T.nonzero()[0] is returning all the none zero features to us :)