Here are my vectors:
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 0.688 0.317
lin_acc_mag_mean vel_ang_unc_mag_mean
<dbl> <dbl>
1 2.94 0.324
or for simplicity:
a <- c(.688,.317)
b <- c(2.94, .324)
I want to compute tcR::cosine.similarity
:
cosine.similarity(a,b, .do.norm = T) gives me 1.388816
If I will do it myself according to Wikipedia:
sum(c(.688,.317) * c(2.94, .324)) / (sqrt(sum(c(.688,.317) ^ 2)) * sqrt(sum(c(2.94, .324) ^ 2)))
And I get 0.948604
so what is different here?
Please advise. I suppose it is the normalization but will be happy for your help.
In the tcR
package the cosine.similarity
function contains the following:
function (.alpha, .beta, .do.norm = NA, .laplace = 0)
{
.alpha <- check.distribution(.alpha, .do.norm, .laplace)
.beta <- check.distribution(.beta, .do.norm, .laplace)
sum(.alpha * .beta)/(sum(.alpha^2) * sum(.beta^2))
}
The intervening check.distribution
calculation returns a vector that sums to 1, but does not appear to be normalized.
I'd recommend using the cosine
function in the lsa
package, instead. This one produces the correct value. It also permits calculation of the cosine similarity for a whole matrix of vectors organized in columns. For example, cosine(cbind(a,b,b,a))
yields the following:
a b b a
a 1.000000 0.948604 0.948604 1.000000
b 0.948604 1.000000 1.000000 0.948604
b 0.948604 1.000000 1.000000 0.948604
a 1.000000 0.948604 0.948604 1.000000