I'am designing keras model for classification based on article data.
I have data with 4 dimension as follows
[batch, article_num, word_num, word embedding size]
and i want to feed each (word_num, word embedding) data into keras Bidirectional layer
in order to get result with 3 dimension as follows.
[batch, article_num, bidirectional layer output size]
when i tried to feed 4 dimension data for testing like this
inp = Input(shape=(article_num, word_num, ))
# dims = [batch, article_num, word_num]
x = Reshape((article_num * word_num, ), input_shape = (article_num, word_num))(inp)
# dims = [batch, article_num * word_num]
x = Embedding(word_num, word_embedding_size, input_length = article_num * word_num)(x)
# dims = [batch, article_num * word_num, word_embedding_size]
x = Reshape((article_num , word_num, word_embedding_size),
input_shape = (article_num * word_num, word_embedding_size))(x)
# dims = [batch, article_num, word_num, word_embedding_size]
x = Bidirectional(CuDNNLSTM(50, return_sequences = True),
input_shape=(article_num , word_num, word_embedding_size))(x)
and i got the error
ValueError: Input 0 is incompatible with layer bidirectional_12: expected ndim=3, found ndim=4
how can i achieve this?
If you don't want it to touch the article_num
dimension, you can try using a TimeDistributed
wrapper. But I'm not certain that it will be compatible with bidirectional and other stuff.
inp = Input(shape=(article_num, word_num))
x = TimeDistributed(Embedding(word_num, word_embedding_size)(x))
#option 1
#x1 shape : (batch, article_num, word_num, 50)
x1 = TimeDistributed(Bidirectional(CuDNNLSTM(50, return_sequences = True)))(x)
#option 2
#x2 shape : (batch, article_num, 50)
x2 = TimeDistributed(Bidirectional(CuDNNLSTM(50)))(x)
Hints:
input_shape
everywhere, you only need it at the Input
tensor. TimeDistributed
in the embedding. word_num
in the final dimension, use return_sequences=False
.