I got a basic idea of Big-O notation from Big-O notation's definition.
In my problem, a 2-D surface is divided into uniform M grids. Each grid (m) is assigned with a posterior probability based on A features.
The posterior probability of m grid is calculated as follows:
and the marginal likelihood is given as:
Here, A features are independent of each other and sigma and mean symbol represent the standard deviation and mean value of each a feature at each grid. I need to calculate the Posterior probability of all M grids.
What will be the time complexity of the above operation in terms of Big-O notation?
My guess is O(M) or O(M+A). Am I correct? I'm expecting an authenticate answer to present at the formal forum.
Also, what will be the time complexity if M grids are divided into T clusters where every cluster has Q grids (Q << M) (calculating Posterior Probability only on Q grids out of M grids) ?
Thank you very much.
Discrete sum and product
can be understood as loops. If you are happy with floating point approximation most other operators are typically O(1), conditional probability looks like a function call. Just inject constants and variables in your equation and you'll get the expected Big-O, the details of formula are irrelevant. Also be aware that these "loops" can often be simplified using mathematical properties.
If the result is not obvious, please convert your above mathematical formula in actual programming code in a programming language. Computer Science Big-O is never about a formula but about an actual translation of it in programming steps, depending on the implementation the same formula can lead to very different execution complexities. As different as adding integers by actually performing sum O(n) or applying Gauss formula O(1) for instance.
By the way why are you doing a discrete sum on a discrete domaine N ? Shouldn't it be M ?