Search code examples
performancecudabandwidthgpu

CUDA performance doubts


Since i didnt got a response from the CUDA forum, ill try it here:

After doing a few programs in CUDA ive now started to obtain their effective bandwidth. However i have some strange results, for example in the following code, where i can sum all the elements in a vector(regardless of dimension), the bandwidth with the Unroll Code and the "normal" code seems to have the same median result(around 3000 Gb/s) I dont know if im doing something wrong(AFAIK the program works fine) but from what ive read so far, the Unroll code should have a higher bandwidth.

#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#include <math.h>
#define elements 1000
#define blocksize 16    


__global__ void vecsumkernel(float*input, float*output,int nelements){



    __shared__ float psum[blocksize];
    int tid=threadIdx.x;

    if(tid + blockDim.x * blockIdx.x < nelements)
    psum[tid]=input[tid+blockDim.x*blockIdx.x];
    else
    psum[tid]=0.0f;
    __syncthreads();

    //WITHOUT UNROLL

    int stride;     
    for(stride=blockDim.x/2;stride>0;stride>>=1){
            if(tid<stride)
                    psum[tid]+=psum[tid+stride];
    __syncthreads();
    }
    if(tid==0)
            output[blockIdx.x]=psum[0];


    //WITH UNROLL
 /*
    if(blocksize>=512 && tid<256) psum[tid]+=psum[tid+256];__syncthreads();
    if(blocksize>=256 && tid<128) psum[tid]+=psum[tid+128];__syncthreads();
    if(blocksize>=128 && tid<64) psum[tid]+=psum[tid+64];__syncthreads();


    if (tid < 32) {
            if (blocksize >= 64) psum[tid] += psum[tid + 32];
            if (blocksize >= 32) psum[tid] += psum[tid + 16];
            if (blocksize >= 16) psum[tid] += psum[tid + 8];
            if (blocksize >=  8) psum[tid] += psum[tid + 4];
            if (blocksize >=  4) psum[tid] += psum[tid + 2];
            if (blocksize >=  2) psum[tid] += psum[tid + 1];
    }*/

    if(tid==0)
            output[blockIdx.x]=psum[0];



}

void vecsumv2(float*input, float*output, int nelements){
    dim3 dimBlock(blocksize,1,1);
    int i;

    for(i=((int)ceil((double)(nelements)/(double)blocksize))*blocksize;i>1;i(int)ceil((double)i/(double)blocksize)){
            dim3 dimGrid((int)ceil((double)i/(double)blocksize),1,1);
            printf("\ni=%d\ndimgrid=%u\n ",i,dimGrid.x);

            vecsumkernel<<<dimGrid,dimBlock>>>(i==((int)ceil((double)(nelements)/(double)blocksize))*blocksize ?input:output,output,i==((int)ceil((double)(nelements)/(double)blocksize))*blocksize ? elements:i);
    }

 }

 void printVec(float*vec,int dim){
    printf("\n{");
    for(int i=0;i<dim;i++)
            printf("%f ",vec[i]);
    printf("}\n");
 }

 int main(){
    cudaEvent_t evstart, evstop;
    cudaEventCreate(&evstart);
    cudaEventCreate(&evstop);


    float*input=(float*)malloc(sizeof(float)*(elements));
    for(int i=0;i<elements;i++)
            input[i]=(float) i;


    float*output=(float*)malloc(sizeof(float)*elements);



    float *input_d,*output_d;

    cudaMalloc((void**)&input_d,elements*sizeof(float));

    cudaMalloc((void**)&output_d,elements*sizeof(float));



    cudaMemcpy(input_d,input,elements*sizeof(float),cudaMemcpyHostToDevice);


    cudaEventRecord(evstart,0);

    vecsumv2(input_d,output_d,elements);

    cudaEventRecord(evstop,0);
    cudaEventSynchronize(evstop);
    float time;
    cudaEventElapsedTime(&time,evstart,evstop);
    printf("\ntempo gasto:%f\n",time);
    float Bandwidth=((1000*4*2)/10^9)/time;
    printf("\n Bandwidth:%f Gb/s\n",Bandwidth);


    cudaMemcpy(output,output_d,elements*sizeof(float),cudaMemcpyDeviceToHost);


    cudaFree(input_d);
    cudaFree(output_d);
    printf("soma do vector");
    printVec(output,4);



   }

Solution

  • Your unrolled code has a lot of branching in it. I count ten additional branches. Typically branching within a warp on a GPU is expensive because all threads in the warp end up waiting on the branch (divergence).

    See here for more info on warp divergence:

    http://forums.nvidia.com/index.php?showtopic=74842

    Have you tried using a profiler to see what's going on?