I'm working on my own smart pointer and I ran into some weird problems. The move assignment operator was not being called. So I wrote a test class and was able to reproduce the issue. The move assignment operator is not called but a copy assignment occurs (even when there is no copy assignment operator).
This is my test class
#include <utility>
#include <iostream>
struct tag_t {};
constexpr tag_t tag {};
template <typename T>
struct Foo {
Foo() noexcept
: val{} {
std::cout << "Default construct\n";
}
template <typename U>
Foo(tag_t, const U &val) noexcept
: val{val} {
std::cout << "Construct " << val << '\n';
}
~Foo() noexcept {
std::cout << "Destruct " << val << '\n';
}
template <typename U>
Foo(Foo<U> &&other) noexcept
: val{std::exchange(other.val, U{})} {
std::cout << "Move construct " << val << '\n';
}
template <typename U>
Foo &operator=(Foo<U> &&other) noexcept {
std::cout << "Move assign " << other.val << '\n';
val = std::exchange(other.val, U{});
return *this;
}
T val;
};
These are the tests
int main() {
{
Foo<int> num;
std::cout << "Value " << num.val << '\n';
num = {tag, 5};
std::cout << "Value " << num.val << '\n';
}
std::cout << '\n';
{
Foo<int> num;
std::cout << "Value " << num.val << '\n';
num = Foo<int>{tag, 5};
std::cout << "Value " << num.val << '\n';
}
return 0;
}
After running the tests, I get these results
Default construct
Value 0
Construct 5
Destruct 5
Value 5
Destruct 5
Default construct
Value 0
Construct 5
Move assign 5
Destruct 0
Value 5
Destruct 5
What baffles me is the output of the first test. The move assignment operator is not called but a copy assignment takes place. This results in 5
being destroyed twice. Not ideal when you're trying to make a smart pointer!
I'm compiling with Apple Clang with optimizations disabled. Can someone explain my observations? Also, how do I ensure that the move assignment operator is called in the first test?
template <typename U>
Foo &operator=(Foo<U> &&other) noexcept;
this cannot be called by ={ }
.
Instead, Foo& operator=(Foo&&)noexcept
is called.
Template methods are never special member functions. Explicitly default, delete or implement them.