I have a regression dataset:
X_train (float64) Size = (1616, 3) -> i.e. 3 predictors
Y_train (float64) Size = (1616, 2) -> i.e. 2 targets
I tried doing Hyperas using Functional API (my main purpose is to use the loss_weights
option during compiling):
inputs1 = Input(shape=(X_train.shape[0], X_train.shape[1]))
x = Dense({{choice([np.power(2,1),np.power(2,2),np.power(2,3),np.power(2,4),np.power(2,5)])}}, activation={{choice(['tanh','relu', 'sigmoid'])}})(inputs1)
x = Dropout({{uniform(0, 1)}})(x)
x = Dense({{choice([np.power(2,1),np.power(2,2),np.power(2,3),np.power(2,4),np.power(2,5)])}}, activation={{choice(['tanh','relu', 'sigmoid'])}})(x)
x = Dropout({{uniform(0, 1)}})(x)
x = Dense({{choice([np.power(2,1),np.power(2,2),np.power(2,3),np.power(2,4),np.power(2,5)])}}, activation={{choice(['tanh','relu', 'sigmoid'])}})(x)
x = Dropout({{uniform(0, 1)}})(x)
if conditional({{choice(['three', 'four'])}}) == 'four':
x = Dense({{choice([np.power(2,1),np.power(2,2),np.power(2,3),np.power(2,4),np.power(2,5)])}}, activation={{choice(['tanh','relu', 'sigmoid'])}})(x)
x = Dropout({{uniform(0, 1)}})(x)
output1 = Dense(1, activation='linear')(x)
output2 = Dense(1, activation='linear')(x)
model = Model(inputs = inputs1, outputs = [output1,output2])
adam = keras.optimizers.Adam(lr={{choice([10**-3,10**-2, 10**-1])}})
rmsprop = keras.optimizers.RMSprop(lr={{choice([10**-3,10**-2, 10**-1])}})
sgd = keras.optimizers.SGD(lr={{choice([10**-3,10**-2, 10**-1])}})
choiceval = {{choice(['adam', 'rmsprop','sgd'])}}
if choiceval == 'adam':
optimizer = adam
elif choiceval == 'rmsprop':
optimizer = rmsprop
else:
optimizer = sgd
model.compile(loss='mae', metrics=['mae'],optimizer=optimizer, loss_weights=[0.5,0.5])
earlyStopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=50, verbose=0, mode='auto')
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=2, save_best_only=True, mode='max')
lr_reducer = ReduceLROnPlateau(monitor='val_loss', factor=0.5, cooldown=1, patience=10, min_lr=1e-4,verbose=2)
callbacks_list = [earlyStopping, checkpoint, lr_reducer]
history = model.fit(X_train, Y_train,
batch_size={{choice([16,32,64,128])}},
epochs={{choice([20000])}},
verbose=2,
validation_data=(X_val, Y_val),
callbacks=callbacks_list)
However, upon running it, I get the following error:
ValueError: Error when checking input: expected input_1 to have 3 dimensions, but got array with shape (1616, 3)
I would greatly appreciate if someone could point me to the direction of what is going wrong here. I suspect the input (i.e. X_train
, Y_train
) and also the Input shape might be at fault. Would appreciate any help here.
UPDATE
Ok so, indeed the fault was at the Input line:
I changed it to: inputs1 = Input(shape=(X_train.shape[1],))
.
However, now I received another error:
ValueError: Error when checking model target: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 2 array(s), but instead got the following list of 1 arrays: [array([[0.19204772, 0.04878049],
[0.20226056, 0. ],
[0.12029842, 0.04878049],
...,
[0.45188627, 0.14634146],
[0.26942276, 0.02439024],
[0.12942418, 0....
Since your model has two output layers, you need to pass a list of two arrays as the true target (i.e. y
) when calling fit()
method. For example like this:
model.fit(X_train, [Y_train[:,0:1], Y_train[:,1:]], ...)