I have a numpy array of these dimensions
data.shape (categories, models, types, events): (10, 11, 50, 100)
Now I want to do sample with replacement
in the innermost array (100) only. For a single array such as this:
data[0][0][0]
array([ 40.448624 , 39.459843 , 33.76762 , 38.944622 , 21.407362 ,
35.55499 , 68.5111 , 16.512974 , 21.118315 , 18.447166 ,
16.026619 , 21.596252 , 41.798622 , 63.01645 , 46.886642 ,
68.874756 , 17.472408 , 53.015724 , 85.41213 , 59.388977 ,
17.352108 , 61.161705 , 23.430847 , 20.203123 , 22.73194 ,
77.40547 , 43.02974 , 29.745787 , 21.50163 , 13.820962 ,
46.91466 , 41.43656 , 18.008326 , 13.122162 , 59.79936 ,
94.555305 , 24.798452 , 30.362497 , 13.629236 , 10.792178 ,
35.298515 , 20.904285 , 15.409604 , 20.567234 , 46.376335 ,
13.82727 , 17.970661 , 18.408686 , 21.987917 , 21.30094 ,
24.26776 , 27.399046 , 49.16879 , 21.831453 , 66.577 ,
15.524615 , 18.091696 , 24.346598 , 24.709772 , 19.068447 ,
24.221592 , 25.244864 , 52.865868 , 22.860783 , 23.586731 ,
18.928782 , 21.960285 , 74.77856 , 15.176119 , 20.795431 ,
14.3638935, 35.937237 , 29.993324 , 30.848495 , 48.145336 ,
38.02541 , 101.15249 , 49.801117 , 38.123184 , 12.041505 ,
18.788296 , 20.53382 , 31.20367 , 19.76104 , 92.56279 ,
41.62944 , 23.53344 , 18.967432 , 14.781404 , 20.02018 ,
27.736559 , 16.108913 , 44.935062 , 12.629299 , 34.65672 ,
20.60169 , 21.779675 , 31.585844 , 23.768578 , 92.463196 ],
dtype=float32)
I can do sample with replacement
using this: np.random.choice(data[0][0][0], 100)
, which I will be doing thousands of times.
array([ 13.629236, 92.56279 , 21.960285, 20.567234, 21.50163 ,
16.026619, 20.203123, 23.430847, 16.512974, 15.524615,
18.967432, 22.860783, 85.41213 , 21.779675, 23.586731,
24.26776 , 66.577 , 20.904285, 19.068447, 21.960285,
68.874756, 31.585844, 23.586731, 61.161705, 101.15249 ,
59.79936 , 16.512974, 43.02974 , 16.108913, 24.26776 ,
23.430847, 14.781404, 40.448624, 13.629236, 24.26776 ,
19.068447, 16.026619, 16.512974, 16.108913, 77.40547 ,
12.629299, 31.585844, 24.798452, 18.967432, 14.781404,
23.430847, 49.16879 , 18.408686, 22.73194 , 10.792178,
16.108913, 18.967432, 12.041505, 85.41213 , 41.62944 ,
31.20367 , 17.970661, 29.745787, 39.459843, 10.792178,
43.02974 , 21.831453, 21.50163 , 24.798452, 30.362497,
21.50163 , 18.788296, 20.904285, 17.352108, 41.798622,
18.447166, 16.108913, 19.068447, 61.161705, 52.865868,
20.795431, 85.41213 , 49.801117, 13.82727 , 18.928782,
41.43656 , 46.886642, 92.56279 , 41.62944 , 18.091696,
20.60169 , 48.145336, 20.53382 , 40.448624, 20.60169 ,
23.586731, 22.73194 , 92.56279 , 94.555305, 22.73194 ,
17.352108, 46.886642, 27.399046, 18.008326, 15.176119],
dtype=float32)
But since there is no axis
in np.random.choice, how can I do it for all arrays (i.e. (categories, models, types))? Or is looping through it the only option?
The fastest/simplest answer turns out to be based on indexing a flattened version of your array:
def resampFlat(arr, reps):
n = arr.shape[-1]
# create an array to shift random indexes as needed
shift = np.repeat(np.arange(0, arr.size, n), n).reshape(arr.shape)
# get a flat view of the array
arrflat = arr.ravel()
# sample the array by generating random ints and shifting them appropriately
return np.array([arrflat[np.random.randint(0, n, arr.shape) + shift]
for i in range(reps)])
Timings confirm that this is the fastest answer.
I tested out the above resampFlat
function alongside a simpler for
loop based solution:
def resampFor(arr, reps):
# store the shape for the return value
shape = arr.shape
# flatten all dimensions of arr except the last
arr = arr.reshape(-1, arr.shape[-1])
# preallocate the return value
ret = np.empty((reps, *arr.shape), dtype=arr.dtype)
# generate the indices of the resampled values
idxs = np.random.randint(0, arr.shape[-1], (reps, *arr.shape))
for rep,idx in zip(ret, idxs):
# iterate over the resampled replicates
for row,rowrep,i in zip(arr, rep, idx):
# iterate over the event arrays within a replicate
rowrep[...] = row[i]
# give the return value the appropriate shape
return ret.reshape((reps, *shape))
and a solution based on Paul Panzer's fancy indexing approach:
def resampFancyIdx(arr, reps):
idx = np.random.randint(0, arr.shape[-1], (reps, *data.shape))
_, I, J, K, _ = np.ogrid[tuple(map(slice, (0, *arr.shape[:-1], 0)))]
return arr[I, J, K, idx]
I tested with the following data:
shape = ((10, 11, 50, 100))
data = np.arange(np.prod(shape)).reshape(shape)
Here's the results from the array flattening approach:
%%timeit
resampFlat(data, 100)
1.25 s ± 9.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
the results from the for
loop approach:
%%timeit
resampFor(data, 100)
1.66 s ± 16.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
and from Paul's fancy indexing:
%%timeit
resampFancyIdx(data, 100)
1.42 s ± 16.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Contrary to my expectations, resampFancyIdx
beat resampFor
, and I actually had to work fairly hard to come up with something better. At this point I would really like a better explanation of how fancy indexing works at the C-level, and why it's so performant.