I have a smoothed time series and want to find the instantaneous velocity of the function at any point along the line.
What I want to do is take a series of values: ex(1,6,5,4,3,5,6,7,1) and return the derivative of each relative to the function of the entire series, such that at every point in time, I know what direction the line is trending.
I am new to R, but know there must be a way.
Any tips?
Ex:
library(smoother)
data(BJsales)
m <- data.frame(BJsales)
x.smth <- as.data.frame(smth.gaussian(m$BJsales,tails=TRUE,alpha = 5))
x.smth.ts <- cbind(seq(1:nrow(m)),x.smth)
colnames(x.smth.ts) <- c("x","y")
x.smth.ts
plot(x.smth.ts$y~x.smth.ts$x)
Desired output:
df with 2 columns: x, deriv.of.y
Edit: Final Result thanks to G5W
Your proposed example using the BJSales data is decidedly not differentiable,
so instead I will show the derivative of a much smoother function. If your real data is smooth, this should work for you.
The simplest way to approximate the derivative is simply to use finite differences.
f'(x) ≈ (f(x+h) - f(x))/h
## Smooth sample function
x = seq(0,10,0.1)
y = x/2 + sin(x)
plot(x,y, pch=20)
## Simplest - first difference
d1 = diff(y)/diff(x)
d1 = c(d1[1],d1)
Let's use it to plot a tangent line as an error check. I picked a place to draw the tangent line arbitrarily: the 18th point, x=1.7
plot(x,y, type="l")
abline(y[18]-x[18]*d1[18], d1[18])
To get the data.frame that you requested, you just need
Derivative = data.frame(x, d1)