I am writing a for loop to calculate a numerator which is part of a larger formula. I used a for loop but it is taking a lot of time to compute. What would be a better way to do this.
city
is a dataframe with the following columns: pop, not.white, pct.not.white
n <- nrow(city)
numerator = 0
for(i in 1:n) {
ti <- city$pop[i]
pi<- city$pct.not.white[i]
for(j in 1:n) {
tj <- city$pop[j]
pj <- city$pct.not.white[j]
numerator = numerator + (ti * tj) * abs(pi -pj)
}
}
Use the following toy data for result validation.
set.seed(0)
city <- data.frame(pop = runif(101), pct.not.white = runif(101))
The most obvious "vectorization":
# n <- nrow(city)
titj <- tcrossprod(city$pop)
pipj <- outer(city$pct.not.white, city$pct.not.white, "-")
numerator <- sum(titj * abs(pipj))
Will probably have memory problem if n > 5000
.
A clever workaround (exploiting symmetry; more memory efficient "vectorization"):
## see https://stackoverflow.com/a/52086291/4891738 for function: tri_ind
n <- nrow(city)
ij <- tri_ind(n, lower = TRUE, diag = FALSE)
titj <- city$pop[ij$i] * city$pop[ij$j]
pipj <- abs(city$pct.not.white[ij$i] - city$pct.not.white[ij$j])
numerator <- 2 * crossprod(titj, pipj)[1]
The ultimate solution is to write C / C++ loop, which I will not showcase.