I'm still trying to figure out how to split code when using mirage and it's myriad of first class modules.
I've put everything I need in a big ugly Context
module, to avoid having to pass ten modules to all my functions, one is pain enough.
I have a function to receive commands over tcp :
let recvCmds (type a) (module Ctx : Context with type chan = a) nodeid chan = ...
After hours of trial and errors, I figured out that I needed to add (type a)
and the "explicit" type chan = a
to make it work. Looks ugly, but it compiles.
But if I want to make that function recursive :
let rec recvCmds (type a) (module Ctx : Context with type chan = a) nodeid chan =
Ctx.readMsg chan >>= fun res ->
... more stuff ...
|> OtherModule.getStorageForId (module Ctx)
... more stuff ...
recvCmds (module Ctx) nodeid chan
I pass the module twice, the first time no problem but I get an error on the recursion line :
The signature for this packaged module couldn't be inferred.
and if I try to specify the signature I get
This expression has type a but an expression was expected of type 'a
The type constructor a would escape its scope
And it seems like I can't use the whole (type chan = a)
thing.
If someone could explain what is going on, and ideally a way to work around it, it'd be great.
I could just use a while of course, but I'd rather finally understand these damn modules. Thanks !
The pratical answer is that recursive functions should universally quantify their locally abstract types with let rec f: type a. .... = fun ...
.
More precisely, your example can be simplified to
module type T = sig type t end
let rec f (type a) (m: (module T with type t = a)) = f m
which yield the same error as yours:
Error: This expression has type (module T with type t = a) but an expression was expected of type 'a The type constructor a would escape its scope
This error can be fixed with an explicit forall quantification: this can be done with the short-hand notation (for universally quantified locally abstract type):
let rec f: type a. (module T with type t = a) -> 'never = fun m -> f m
The reason behind this behavior is that locally abstract type should not escape the scope of the function that introduced them. For instance, this code
let ext_store = ref None
let store x = ext_store := Some x
let f (type a) (x:a) = store x
should visibly fail because it tries to store a value of type a
, which is a non-sensical type outside of the body of f
.
By consequence, values with a locally abstract type can only be used by polymorphic function. For instance, this example
let id x = x
let f (x:a) : a = id x
is fine because id x
works for any x
.
The problem with a function like
let rec f (type a) (m: (module T with type t = a)) = f m
is then that the type of f
is not yet generalized inside its body, because type generalization in ML happens at let
definition. The fix is therefore to explicitly tell to the compiler that f
is polymorphic in its argument:
let rec f: 'a. (module T with type t = 'a) -> 'never =
fun (type a) (m:(module T with type t = a)) -> f m
Here, 'a. ...
is an universal quantification that should read forall 'a. ...
.
This first line tells to the compiler that the function f
is polymorphic in its first argument, whereas the second line explicitly introduces the locally abstract type a
to refine the packed module type. Splitting these two declarations is quite verbose, thus the shorthand notation combines both:
let rec f: type a. (module T with type t = a) -> 'never = fun m -> f m