I have table like this
CREATE TABLE ks.log_by_date (
column_name text,
status text,
error_msg text,
last_update_date date,
last_update_timestamp timestamp,
updated_user text,
PRIMARY KEY (( column_name), last_update_date)
) WITH CLUSTERING ORDER BY ( last_update_date DESC );
INSERT INTO ks.log_by_date (column_name,last_update_date,error_msg,last_update_timestamp,status,updated_user)
VALUES ('column_log_by_date','2018-10-23','NONE',1540302120001,'ERROR','user1');
INSERT INTO ks.log_by_date (column_name,last_update_date,error_msg,last_update_timestamp,status,updated_user)
VALUES ('column_log_by_date','2018-10-23','NONE',1540302340001,'SUCCESS','user1');
When i insert two columns based on "last_update_timestamp" column with different timestamps 1540302120001 & 1540302340001 the row is overwritten.
What am i doing wrong here ? why it is overwrittening the rows instead of two separate rows. How can I make to insert two rows here... based on last_update_timestamp
Your help is highly appriciable.
If you want that 2 rows with different last_update_timestamp
were counted as separate rows, then you need to put last_update_timestamp
into primary key, as a clustering column:
PRIMARY KEY (( column_name), last_update_date, last_update_timestamp)
but I don't know - do you really need to have last_update_date
there? Do you need to select all rows that have some specific last_update_date
?