Given a DataFrame df
Value
Category Pool Class
A 1.0 1.0 1
9.0 2
B 1.0 1.0 3
C 1.0 1.0 4
5.0 5
I want to convert the levels Pool
and Class
to integers without reset_index
(see below).
I tried using a combination of get_level_values
and set_levels
like so
for c in ['Pool', 'Class']:
df.index.set_levels(df.index.get_level_values(c).astype(int), level=c, inplace=True)
However, this raises
ValueError: Level values must be unique: [1, 1, 1, 1, 1] on level 1
To understand what happens, I also tried using verify_integrity=False
. Then
df.index.set_levels(df.index.get_level_values('Class').astype(int),
level='Class', verify_integrity=False, inplace=True)
produces
Value
Category Pool Class
A 1.0 1 1
1 2
B 1.0 1 3
C 1.0 1 4
9 5
whereas my goal is to obtain
Value
Category Pool Class
A 1.0 1 1
9 2
B 1.0 1 3
C 1.0 1 4
5 5
How to achieve this properly? Is chaining of get_level_values
and set_levels
the correct way to do it? Why is pandas
not able to properly set the level after having it transformed with astype
?
I guess you could work with reset_index
and set_index
but what is the benefit then of having the methods set_levels
?
d = {'Category': str, 'Pool': int, 'Class': int}
df.reset_index(drop=False, inplace=True)
for k, v in d.items():
df[k] = df[k].astype(v)
df.set_index(list(d.keys()), inplace=True)
You can access index levels directly via pd.MultiIndex.levels
and feed to pd.MultiIndex.set_levels
:
df.index = df.index.set_levels(df.index.levels[2].astype(int), level=2)
print(df)
Value
Category Pool Class
A 1.0 1 1
9 2
B 1.0 1 3
C 1.0 1 4
5 5