I have found answers to this question on here before, but none of them seem to work for me. Right now I have a data frame with a list of clients and their address. However, each address is separated into many columns and i'm trying to put them all under one.
The code I have so far read as so:
data1_df['Address'] = data1_df['Address 1'].map(str) + ", " + data1_df['Address 2'].map(str) + ", " + data1_df['Address 3'].map(str) + ", " + data1_df['city'].map(str) + ", " + data1_df['city'].map(str) + ", " + data1_df['Province/State'].map(str) + ", " + data1_df['Country'].map(str) + ", " + data1_df['Postal Code'].map(str)
However, the error I get is: TypeError: Unary plus expects numeric dtype, not object
I'm not sure why it's not accepting the strings as they are and using the + operator. Shouldn't the plus accommodate objects?
Hopefully you'll find this example helpful:
import pandas as pd
import numpy as np
df = pd.DataFrame({'A': [1,2,3],
'B': list('ABC'),
'C': [4,5,np.nan],
'D': ['One', np.nan, 'Three']})
addColumns = ['B', 'C', 'D']
df['Address'] = df[addColumns].astype(str).apply(lambda x: ', '.join([i for i in x if i != 'nan']), axis=1)
df
# A B C D Address
#0 1 A 4.0 One A, 4.0, One
#1 2 B 5.0 NaN B, 5.0
#2 3 C NaN Three C, Three
The above will work as str
representation of NaN
is nan
.
Or you can make it with filling NaN
with empty strings:
df['Address'] = df[addColumns].fillna('').astype(str).apply(lambda x: ', '.join([i for i in x if i]), axis=1)